Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(2): 025701, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32916677

RESUMO

Recently graphene and other 2D materials were suggested as nano additives to enhance the performance of nanolubricants and reducing friction and wear-related failures in moving mechanical parts. Nevertheless, to our knowledge there are no previous studies on electrochemical exfoliated nanomaterials as lubricant additives. In this work, engine oil-based nanolubricants were developed via two-steps method using two different 2D nanomaterials: a carbon-based nano additive, graphene nanoplatelets (GNP) and a sulphide nanomaterial, molybdenum disulfide (MoS2) nanoplatelets (MSNP). The influence of these nano additives on the thermophysical properties of the nanolubricants, such as viscosity index, density and wettability, was investigated. The unique features of the electrochemical exfoliated GNP and MSNP allow the formulation of nanolubricant with unusual thermophysical properties. Both the viscosity and density of the nanolubricants decreased by increasing the nanoplatelets loading. The effect of the nano additives loading and temperature on the tribological properties of nanolubricants was investigated using two different test configurations: reciprocating ball-on-plate and rotational ball-on-three-pins. The tribological specimens were analysed by scanning electron microscopy (SEM) and 3D profiler in order to evaluate the wear. The results showed significant improvement in the antifriction and anti-wear properties, for the 2D-materials-based nanolubricants as compared with the engine oil, using different contact conditions. For the reciprocal friction tests, maximum friction and worn area reductions of 20% and 22% were achieved for the concentrations of 0.10 wt% and 0.20 wt% GNP, respectively. Besides, the best anti-wear performance was found for the nanolubricant containing 0.05 wt% MSNP in rotational configuration test, with reductions of 42% and 60% in the scar width and depth, respectively, with respect to the engine oil.

2.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730800

RESUMO

Electric vehicles (EVs) have emerged as a technology that can replace internal combustion vehicles and reduce greenhouse gas emissions. Therefore, it is necessary to develop novel low-viscosity lubricants that can serve as potential transmission fluids for electric vehicles. Thus, this work analyzes the influence of both SiO2 and SiO2-SA (coated with stearic acid) nanomaterials on the tribological behavior of a paraffinic base oil with an ISO VG viscosity grade of 32 and a 133 viscosity index. A traditional two-step process through ultrasonic agitation was utilized to formulate eight nanolubricants of paraffinic oil + SiO2 and paraffinic base oil + SiO2-SA with nanopowder mass concentrations ranging from 0.15 wt% to 0.60 wt%. Visual control was utilized to investigate the stability of the nanolubricants. An experimental study of different properties (viscosity, viscosity index, density, friction coefficient, and wear) was performed. Friction analyses were carried out in pure sliding contacts at 393.15 K, and a 3D optical profilometer was used to quantify the wear. The friction results showed that, for the SiO2-SA nanolubricants, the friction coefficients were much lower than those obtained with the neat paraffinic base oil. The optimal nanoparticle mass concentration was 0.60 wt% SiO2-SA, with which the friction coefficient decreased by around 43%. Regarding wear, the greatest decreases in width, depth, and area were also found with the addition of 0.60 wt% SiO2-SA; thus, reductions of 21, 22, and 54% were obtained, respectively, compared with the neat paraffinic base oil.

3.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998706

RESUMO

This work is focused on the thermophysical and tribological study of eight nanolubricant compositions based on a polyalphaolefin (PAO 20) and two different nanoadditives: multi-walled carbon nanotubes (MWCNTs) and hexagonal boron nitride (h-BN). Regarding the thermophysical properties, density and dynamic viscosity of the base oil and the nanolubricants were measured in the range of 278.15-373.15 K, as well as their viscosity index, with the aim of evaluating the variation of these properties with the addition of the nanoadditives. On the other hand, their lubricant properties, such as contact angle, coefficient of friction, and wear surface, were determined to analyze the influence of the nanoadditives on the tribological performance of the base oil. The results showed that MWCNTs and h-BN nanoadditives improved the wear area by 29% and 37%, respectively, at a 0.05 wt% concentration. The density and dynamic viscosity increased compared with the base oil as the nanoadditive concentration increased. The addition of MWCNTs and h-BN nanoparticles enhanced the tribological properties of PAO 20 base oil.

4.
Nanomaterials (Basel) ; 8(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29286324

RESUMO

This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol-1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA