Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 277: 126361, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38878509

RESUMO

This paper presents an innovative application of chitosan material to be used as pH-responsive valves for the precise control of lateral flow in microfluidic paper-based analytical devices (µPADs). The fabrication of µPADs involved wax printing, while pH-responsive valves were created using a solution of chitosan in acetic acid. The valve-forming solution was applied, and ready when dry; by exposure to acidic solutions, the valve opens. Remarkably, the valves exhibited excellent compatibility with alkaline, neutral, and acidic solutions with a pH higher than 4. The valve opening process had no impact on the flow rate and colorimetric analysis. The potential of chitosan valves used for flow control was demonstrated for µPADs employed for nitrate determination. Valves were used to increase the conversion time of nitrate to nitrite, which was further analyzed using the Griess reaction. The µPAD showed a linear response in the concentration range of 10-100 µmol L-1, with a detection limit of 5.4 µmol L-1. As a proof of concept, the assay was successfully applied to detect nitrate levels in water samples from artificial lakes of recreational parks. For analyses that require controlled kinetics and involve multiple sequential steps, the use of chitosan pH-responsive valves in µPADs is extremely valuable. This breakthrough holds great potential for the development of simple and high-impact microfluidic platforms that can cater to a wide range of analytical chemistry applications.

2.
Lab Chip ; 24(3): 467-479, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126917

RESUMO

Multiple protocols have been reported to fabricate paper-based analytical devices (PADs). However, some of these techniques must be revised because of the instrumentation required. This paper describes a versatile and globally affordable method to fabricate PADs using office paper as a substrate and a laser printing technique to define hydrophobic barriers on paper surfaces. To demonstrate the feasibility of the alternatives proposed in this study, the fabrication of devices for three types of detection commonly associated with using PADs was demonstrated: colorimetric detection, electrochemical detection, and mass spectrometry associated with a paper-spray ionization (PSI-MS) technique. Besides that, an evaluation of the type of paper used and chemical modifications required on the substrate surface are also presented in this report. Overall, the developed protocol was suitable for using office paper as a substrate, and the laser printing technique as an efficient fabrication method when using this substrate is accessible at a resource-limited point-of-need. Target analytes were used as a proof of concept for these detection techniques. Colorimetric detection was carried out for acetaminophen, iron, nitrate, and nitrite with limits of detection of 0.04 µg, 4.5 mg mL-1, 2.7 µmol L-1, and 6.8 µmol L-1, respectively. A limit of detection of 0.048 fg mL-1 was obtained for the electrochemical analysis of prostate-specific antigen. Colorimetric and electrochemical devices revealed satisfactory performance when office paper with a grammage of 90 g m-2 was employed. Methyldopa analysis was also carried out using PSI-MS, which showed a good response in the same paper weight and behavior compared to chromatographic paper.

3.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 117-138, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37068747

RESUMO

Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.


Assuntos
Instalações de Saúde , Microfluídica , Humanos , Dispositivos Lab-On-A-Chip , Laboratórios , Doenças Negligenciadas/diagnóstico
4.
Anal Methods ; 13(44): 5383-5390, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34734929

RESUMO

This study reports the simultaneous colorimetric detection of urea, H2O2, and pH in milk samples using microfluidic paper-based analytical devices (µPADs) fabricated through a craft cutter printer. Paper-based devices were designed to contain three detection zones interconnected to a sampling zone by microfluidic channels. Colorimetric analysis was performed using images digitalized through an office scanner. The volumes of chromogenic and sample solutions were optimized, and the best colorimetric performance was achieved by adding 0.5 and 10 µL into detection and sampling zones, respectively. Simultaneous assays were then carried out, and the recorded responses revealed a linear behavior in the concentration ranges from 0-30.0 mmol L-1, 0-10.0 mmol L-1 and 6.0-9.0 for urea, H2O2 and pH, respectively. The limit of detection values obtained for urea and H2O2 were 2.4 mmol L-1 and 0.1 mmol L-1, respectively. For pH measurements, colorimetric assay allowed the monitoring of solution pH with a resolution of 0.25 units. The use of µPADs to detect target adulterants exhibited suitable reproducibility (RSD ≤ 6.0%), accuracy (91-102%) and no cross-reaction occurrence. When compared to reference techniques, colorimetric assays did not reveal a significant difference at a confidence level of 95%. As a proof-of-concept, the feasibility of the proposed approach was successfully demonstrated through the analysis of potential adulterants in sixteen milk samples, which were tested without any pretreatment requirement. Based on the achievements, µPADs in conjunction with colorimetric measurements emerge as a powerful tool for rapid screening of potential adulterants in milk.


Assuntos
Microfluídica , Leite , Animais , Peróxido de Hidrogênio , Dispositivos Lab-On-A-Chip , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA