Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38634142

RESUMO

The ability of predators to adopt hunting tactics that minimise escape reactions from prey is crucial for efficient foraging, and depends on detection capabilities and locomotor performance of both predators and prey. Here, we investigated the efficiency of a small pinniped, the Antarctic fur seal (Arctocephalus gazella) at exploiting their small prey by describing for the first time their fine-scale predator-prey interactions. We compared these with those from another diving predator, the southern elephant seal (Mirounga leonina) that forage on the same prey type. We used data recorded by a newly developed sonar tag that combines active acoustics with ultrahigh-resolution movement sensors to study simultaneously the fine-scale behaviour of both Antarctic fur seals and prey during predator-prey interactions in more than 1200 prey capture events for eight female Antarctic fur seals. Our results showed that Antarctic fur seals and their prey detect each other at the same time, i.e. 1-2 s before the strike, forcing Antarctic fur seals to display reactive fast-moving chases to capture their prey. In contrast, southern elephant seals detect their prey up to 10 s before the strike, allowing them to approach their prey stealthily without triggering an escape reaction. The active hunting tactics used by Antarctic fur seals is probably very energy consuming compared with the stalking tactics used by southern elephant seals but might be compensated for by the consumption of faster-moving larger prey. We suggest that differences in manoeuvrability, locomotor performance and detection capacities and in pace of life between Antarctic fur seals and southern elephant seals might explain these differences in hunting styles.


Assuntos
Otárias , Comportamento Predatório , Focas Verdadeiras , Animais , Otárias/fisiologia , Feminino , Focas Verdadeiras/fisiologia , Regiões Antárticas , Acústica , Reação de Fuga/fisiologia
2.
Ecol Evol ; 14(5): e11448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799391

RESUMO

Intra-population heterogeneity in the behavioural response of predators to changes in prey availability caused by human activities can have major evolutionary implications. Among these activities, fisheries, while extracting resources, also provide new feeding opportunities for marine top predators. However, heterogeneity in the extent to which individuals have responded to these opportunities within populations is poorly understood. Here, we used 18 years of photo-identification data paired with statistical models to assess variation in the way killer whale social units within a subantarctic population (Crozet Islands) interact with fisheries to feed on fish caught on fishing gear (i.e., depredation behaviour). Our results indicate large heterogeneity in both the spatial and temporal extents of depredation across social units. While some frequently depredated on fishery catches over large areas, others sporadically did so and in small areas consistently over the years. These findings suggest that killer whale social units are exposed to varying levels of impacts of depredation, both negative (potential retaliation from fishers) and positive (food provisioning), on their life history traits, and may explain the contrasted demographic patterns observed within the declining population at Crozet but also potentially within the many other killer whale populations documented depredating on fisheries catches worldwide.

3.
Physiol Behav ; 279: 114525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38531424

RESUMO

Weaned southern elephant seals (SES) quickly transition from terrestrial to aquatic life after a 5- to 6-week post-weaning period. At sea, juveniles and adult elephant seals present extreme, continuous diving behaviour. Previous studies have highlighted the importance of the post-weaning period for weanlings to prepare for the physiological challenges of their future sea life. However, very little is known about how their body condition during this period may influence the development of their behaviour and brain activities. To characterise changes in the behavioural and brain activity of weanlings prior to ocean departure, we implemented a multi-logger approach combining measurements of movements (related to behaviour), pressure (related to diving), and brain electrical activity. As pups age, the amount of time allocated to resting decreases in favour of physical activity. Most resting (9.6 ± 1.2 h/day) takes place during daytime, with periods of slow-wave sleep representing 4.9 ± 0.9 h/day during the first 2 weeks. Furthermore, an increasing proportion of physical activity transitions from land to shore. Additionally, pups in poorer condition (lean group) are more active earlier than those in better condition (corpulent group). Finally, at weaning, clear circadian activity with two peaks at dawn and dusk is observed, and this pattern remains unchanged during the 4 weeks on land. This circadian pattern matches the one observed in adults at sea, with more prey catches at dawn and dusk, raising the question of whether it is endogenous or triggered by the mother during lactation.


Assuntos
Mães , Focas Verdadeiras , Feminino , Animais , Humanos , Focas Verdadeiras/fisiologia , Oceanos e Mares
4.
R Soc Open Sci ; 11(1): 230666, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179081

RESUMO

Understanding the ontogeny of diving behaviour in marine megafauna is crucial owing to its influence on foraging success, energy budgets, and mortality. We compared the ontogeny of diving behaviour in two closely related species-northern elephant seals (Mirounga angustirostris, n = 4) and southern elephant seals (Mirounga leonina, n = 9)-to shed light on the ecological processes underlying migration. Although both species have similar sizes and behaviours as adults, we discovered that juvenile northern elephant seals have superior diving development, reaching 260 m diving depth in just 30 days, while southern elephant seals require 160 days. Similarly, northern elephant seals achieve dive durations of approximately 11 min on their first day of migration, while southern elephant seals take 125 days. The faster physiological maturation of northern elephant seals could be related to longer offspring dependency and post-weaning fast durations, allowing them to develop their endogenous oxygen stores. Comparison across both species suggests that weaned seal pups face a trade-off between leaving early with higher energy stores but poorer physiological abilities or leaving later with improved physiology but reduced fat stores. This trade-off might be influenced by their evolutionary history, which shapes their migration behaviours in changing environments over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA