Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Langmuir ; 40(18): 9414-9425, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651693

RESUMO

Emulsions have become a crucial product form in various industries in modern times. Expanding the class of substances used to stabilize emulsions can improve their stability or introduce new properties. Particularly, the use of stimuli-responsive microgels makes it possible to create "smart" emulsions whose stability can be controlled by changing any of the specified stimuli. Thus, finding new ways to stabilize emulsions may broaden their application. In this work, for the first time, we applied microgels based on interpenetrating polymeric networks (IPNs) of poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) as stabilizing agents for "oil-in-water" emulsions. We have demonstrated that emulsions stabilized by such soft particles can remain colloidally stable for an extended period, even after being heated up to 40 °C, which is above the lower critical solution temperature (LCST) of PNIPAM. On the contrary, the emulsions stabilized by PNIPAM homopolymer microgels were broken upon heating. To understand the stabilization mechanism of the emulsions, mesoscopic computer simulations were performed to study the IPN microgels at the liquid-liquid interface. The simulations demonstrated that when the first subnetwork (PNIPAM) collapses, the particle adopts a flattened core-shell morphology with a highly swollen PAA-rich shell and a collapsed PNIPAM-rich core. Unlike its PNIPAM homopolymer counterpart, the IPN microgel maintains its three-dimensional shape, which provides stability to the microgel-based emulsions over a wide range of temperatures. Our combined findings could be useful in developing new approaches to emulsions' storage, biphasic catalysis, and lubrication of mechanisms in various operating and climatic conditions.

2.
Langmuir ; 39(35): 12420-12429, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37611207

RESUMO

Monolayers of polymer microgels with a spherical cavity adsorbed at the liquid-liquid interface were studied using mesoscopic computer simulations. One liquid, named water, was always considered as a good solvent, while the microgel solubility in the second liquid, named oil, was varied. The symmetric and asymmetric cases of vanishing and the strong differences in solubility between the network particles and the liquids were considered. The simulations provided us with an insight into the shape and volume changes of the microgels upon compression, making it possible to relate the response of the individual network with the collective order and structure of the monolayer. Similar to regular microgels, the compression of the monolayer of hollow particles led to a decrease in lateral sizes accompanied by shape transformation from a flattened to a nearly spherical shape. However, the presence of a cavity filled with solvent caused some unique differences in the behavior of the system. The adsorption pathway of hollow microgels at the liquid interface predefines: (a) the position of the particles with respect to the interface and (b) the structure of the monolayer. A striking discovery is that in the symmetric case of similar solubility of the microgel in both liquids, it is possible to produce a monolayer in which one part of the network faces the aqueous phase and the other part faces the oil phase. The polymer concentration profiles plotted along the normal to the interface reveal a redistribution of polymeric mass of the microgels relative to the interface, distinguishing between the microgels whose cavities are filled with water and oil, respectively. Moreover, the ratio between the microgels faced in water and oil does not change upon compression and predetermines the response and order of the monolayer.

3.
Langmuir ; 38(17): 5226-5236, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166545

RESUMO

The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PiPOx239-g-PnPrOx14, features a relatively long poly(2-isopropenyl-2-oxazoline) (PiPOx) backbone and short poly(2-n-propyl-2-oxazoline) (PnPrOx) side chains. As a solvent, ethanol is used. By model fitting, the overall size and the persistence length as well as the interaction length and interaction strength are determined. At this, the interplay between form and structure factor is taken into account. The conformation of the molecular brush is traced upon increasing the solution concentration, and a rigid-to-flexible transition is found near the overlap concentration. Finally, the results of computer simulations of the molecular brush solutions confirm the experimental results.


Assuntos
Solventes , Simulação por Computador , Conformação Molecular , Solventes/química
4.
Soft Matter ; 18(25): 4810, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699144

RESUMO

Correction for 'Effect of network topology and crosslinker reactivity on microgel structure and ordering at liquid-liquid interface' by Rustam A. Gumerov et al., Soft Matter, 2022, 18, 3738-3747, https://doi.org/10.1039/D2SM00269H.

5.
Soft Matter ; 18(19): 3738-3747, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506715

RESUMO

Polymer microgels synthesized in silico were studied at a liquid-liquid interface via mesoscopic computer simulations and compared to microgels with ideal (diamond-like) structure. The effect of crosslinkers reactivity ratio on the single particle morphology at the interface and monolayer behavior was examined. It was demonstrated that single particles deform into an explicit core-corona morphology when adsorbed at the interface. An increase in the crosslinker reactivity ratio decreased both the deformation ratio and the ratio between the core and corona sizes. Meanwhile, the compression of microgel monolayers revealed the existence of five distinct interparticle contact regimes, which have been observed experimentally in the literature. The crosslinker reactivity ratio appeared to define the compression range in these regimes and the sharpness of the transition between them. In particular, the higher the crosslinker reactivity ratio, the smaller the corona, and in turn, the narrower the range of the intermediate regime comprising both core-core and corona-corona contacts. The obtained results demonstrate that the more realistic model of microgels synthesized via precipitation polymerization allows for a more accurate prediction of the properties of the microgels at a liquid-liquid interface in comparison to the conventional diamond-like lattice model.

6.
Angew Chem Int Ed Engl ; 61(20): e202116653, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35274425

RESUMO

Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro- and hepato-toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half-life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano- or microgels.


Assuntos
Microgéis , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tempo de Circulação Sanguínea , Elasticidade , Nanogéis
7.
Phys Chem Chem Phys ; 23(8): 4927-4934, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33620358

RESUMO

Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.

8.
Nano Lett ; 19(12): 8862-8867, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31642321

RESUMO

Solid-liquid interfaces play an important role for functional devices. Hence, a detailed understanding of the interaction of soft matter objects with solid supports and of the often concomitant structural deformations is of great importance. We address this topic in a combined experimental and simulation approach. We investigated thermoresponsive poly(N-isopropylmethacrylamide) microgels (µGs) at different surfaces in an aqueous environment. As super-resolution fluorescence imaging method, three-dimensional direct stochastical optical reconstruction microscopy (dSTORM) allowed for visualizing µGs in their three-dimensional (3D) shape, for example, in a "fried-egg" conformation depending on the hydrophilicity of the surface (strength of adsorption). The 3D shape, as defined by point clouds obtained from single-molecule localizations, was analyzed. A new fitting algorithm yielded an isosurface of constant density which defines the deformation of µGs at the different surfaces. The presented methodology quantifies deformation of objects with fuzzy surfaces and allows for comparison of their structures, whereby it is completely independent from the data acquisition method. Finally, the experimental data are complemented with mesoscopic computer simulations in order to (i) rationalize the experimental results and (ii) to track the evolution of the shape with changing surface hydrophilicity; a good correlation of the shapes obtained experimentally and with computer simulations was found.

9.
Langmuir ; 35(19): 6231-6255, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30998365

RESUMO

Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.

10.
Langmuir ; 35(51): 16780-16792, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31782927

RESUMO

We investigate soft, temperature-sensitive microgels at fluid interfaces. Though having an isotropic, spherical shape in bulk solution, the microgels become anisotropic upon adsorption. The structure of microgels at interfaces is described by a core-corona morphology. Here, we investigate how changing temperature across the microgel volume phase transition temperature, which leads to swelling/deswelling of the microgels in the aqueous phase, affects the phase behavior within the monolayer. We combine compression isotherms, atomic force microscopy imaging, multiwavelength ellipsometry, and computer simulations. At low compression, the interaction between adsorbed microgels is dominated by their highly stretched corona and the phase behavior of the microgel monolayers is the same. The polymer segments within the interface lose their temperature-sensitivity because of the strong adsorption to the interface. At high compression, however, the portions of the microgels that are located in the aqueous side of the interface become relevant and prevail in the microgel interactions. These portions are able to collapse and, consequently, the isostructural phase transition is altered. Thus, the temperature-dependent swelling perpendicular to the interface ("3D") affects the compressibility parallel to the interface ("2D"). Our results highlight the distinctly different behavior of soft, stimuli-sensitive microgels as compared to rigid nanoparticles.

11.
Soft Matter ; 15(19): 3978-3986, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31025694

RESUMO

Amphiphilic microgels adsorbed at an oil-water interface were studied by means of dissipative particle dynamics (DPD) simulations. The hydrophobic (A) and hydrophilic (B) monomer units in the polymer network are considered to be randomly distributed. Effects of the crosslinking density, interfacial tension between the liquids, their selectivity as solvents towards species A and B, and the degree of incompatibility between the A and B units on the internal microgel structure and distribution of the liquids are considered. The most important predictions are that (i) two immiscible liquids can homogeneously be mixed within the microgels and (ii) the adsorbed microgels contain a high fraction of the liquids (they are swollen at the interface). Simultaneous fulfillment of these two conditions can have a high impact on the design of new and efficient catalytic systems. In particular, such microgels can mix immiscible reactants dissolved in water and oil and trigger chemical reactions in the presence of a catalyst embedded into the microgel.

12.
Langmuir ; 32(3): 723-30, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26717422

RESUMO

This work concerns interfacial adsorption and attachment of swollen microgel with low- to medium-level cross-linking density. Compared to colloids that form a second, dispersed phase, the suspended swollen microgel particles are ultrahigh molecular weight molecules, which are dissolved like a linear polymer, so that solvent and solute constitute only one phase. In contrast to recent literature in which microgels are treated as particles with a distinct surface, we consider solvent-solute interaction as well as interfacial adsorption based on the chain segments that can form trains of adsorbed segments and loops protruding from the surface into the solvent. We point out experimental results that support this discrimination between particles and microgels. The time needed for swollen microgels to adsorb at the air/water interface can be 3 orders of magnitude shorter than that for dispersed particles and decreases with decreasing cross-linking density. Detailed analysis of the microgels deformation, in the dry state, at a solid surface enabled discrimination particle like microgel in which case spreading was controlled predominantly by the elasticity and molecule like adsorption characterized by a significant overstreching, ultimately leading to chain scission of microgel strands. Dissipative particle dynamics simulations confirms the experimental findings on the interfacial activity and spreading of microgel at liquid/air interface.

13.
Soft Matter ; 12(32): 6799-811, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460037

RESUMO

We propose a mean-field theory and dissipative particle dynamics (DPD) simulations of swelling and collapse of a polymer microgel adsorbed at the interface of two immiscible liquids (A and B). The microgel reveals surface activity and lowers A-B interfacial tension. Attempting to occupy as large an interfacial area as possible, the microgel undergoes anisotropic deformation and adopts a flattened shape. Spreading over the interface is restricted by polymer subchain elasticity. The equilibrium shape of the microgel at the interface depends on its size. Small microgels are shown to be more oblate than the larger microgels. Increasing microgel cross-link density results in stronger reduction of the surface tension and weaker flattening. As the degree of immiscibility of A and B liquids increases, the microgel volume changes in a non-monotonous fashion: the microgel contraction at moderate immiscibility of A and B liquids is followed by its swelling at high incompatibility of the liquids. The segregation regime of the liquids within and outside the microgel is different. Being segregated outside the microgel, the liquids can be fully (homogeneously) mixed or weakly segregated within it. The density profiles of the liquids and the polymer were plotted under different conditions. The theoretical and the DPD simulation results are in good agreement. We hope that our findings will be useful for the design of stimuli responsive emulsions, which are stabilized by the microgel particles, as well as for their practical applications, for instance, in biocatalysis.

14.
J Colloid Interface Sci ; 629(Pt B): 270-278, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36155922

RESUMO

Polymer microgels have proven to be highly promising macromolecular objects for a wide variety of applications. In particular, the soft particles of an anisotropic (rod-like) shape are of special interest because of their potential use in tissue engineering or materials design. However, a little is known about the physical behavior of such microgels in solution, which inspired us to study them using mesoscopic computer simulations. For single networks, depending on the solvent quality, the dimensional characteristics were obtained for microgels of different molecular weight, crosslinking density and aspect ratio. In particular, the conditions for the rod-to-rod (preserving the nonspherical shape) and rod-to-sphere collapse were found. In addition, the effect of the liquid-crystalline (LC) ordering was demonstrated for the ensemble of rod-like microgels at different swelling ratios, and the influence of microgel aspect ratio on the volume fraction of the LC transition was shown.

15.
Polymers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36501471

RESUMO

Densely grafted comb-like macromolecules (bottlebrushes) with alternating solvophobic and solvophilic side chains were studied in a selective solvent and at the liquid interface using mesoscopic computer simulations. The effects of backbone length and copolymer composition were considered. While self-assembly in solution revealed only spherical aggregates for all ar-chitectures studied, adsorption onto the liquid interface in particular cases resulted in morpho-logical changes, with worm-like aggregates or a continuous monolayer observed. In turn, the compression of macromolecules at the interface also leads to morphological transitions, includ-ing the formation of a mesh-like percolated structure. The obtained results may be useful for the preparation of solid nanoparticles of anisotropic shape or nanostructured ultra-thin copolymer films.

16.
J Colloid Interface Sci ; 606(Pt 2): 1966-1973, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749445

RESUMO

Amphiphilic miktoarm star copolymers with one long solvophobic arm (a "stem") and several short solvophilic arms (the "leaves") were studied in a selective solvent using mesoscopic computer simulations. The conventional morphologies (spherical, cylindrical and vesicular) as well as the mixed ones were obtained. However, the resulting diagram of states appeared to be different from the diagram of the linear diblock copolymer with the analogous composition. Namely, the increase of the number of leaves at fixed solvophobic-solvophilic ratio leads to the transition from the vesicles to the cylinders, while the latter ones eventually transform into spherical micelles in the case of highly branched copolymers. The observed effect appears due to the increase of the interfacial area between the collapsed and swollen blocks per single macromolecule. In turn, the increase of the solvent selectivity shifts the stability region of the cylindrical micelles to the region of more symmetric copolymer composition. Meanwhile, the compatibility between the blocks has a weak effect on the resulting morphology. Finally, it was found that the increase in the number of leaves and the simultaneous decrease in their length results in the localization of higher amount of solvophilic segments near the core-solvent interface, which in the case of cylindrical micelles significantly affects the shape of the aggregates making them thinner and longer.


Assuntos
Micelas , Polímeros , Simulação por Computador , Substâncias Macromoleculares , Solventes
17.
Polymers (Basel) ; 14(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433158

RESUMO

In this study, we propose computer simulations of charged cylindrical microgels. The effects of cross-linking density, aspect ratio, and fraction of charged groups on the microgel swelling and collapse with a variation in the solvent quality were studied. The results were compared with those obtained for equivalent neutral cylindrical microgels. The study demonstrated that microgels' degree of swelling strongly depends on the fraction of charged groups. Polyelectrolyte microgels under adequate solvent conditions are characterized by a larger length and thickness than their neutral analogues: the higher the fraction of charged groups, the longer their length and greater their thickness. Microgels' collapse upon solvent quality decline is characterized by a decrease in length and non-monotonous behavior of its thickness. First, the thickness decreases due to the attraction of monomer units (beads) upon collapse. The further thickness increase is related to the surface tension, which tends to reduce the anisotropy of collapsed objects (the minimum surface energy is known to be achieved for the spherical objects). This reduction is opposed by the network elasticity. The microgels with a low cross-linking density and/or a low enough aspect ratio reveal a cylinder-to-sphere collapse. Otherwise, the cylindrical shape is preserved in the course of the collapse. Aspect ratio as a function of the solvent quality (interaction parameter) demonstrates the maximum, which is solely due to the electrostatics. Finally, we plotted radial concentration profiles for network segments, their charged groups, and counterions.

18.
ACS Appl Mater Interfaces ; 14(51): 57244-57250, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36512418

RESUMO

Polymer hydrogels are known to be efficient absorbents of various aqueous solutions. Along with the hydrophilicity of the polymer network, the presence of specific functional groups is required for the absorption of respective solutes. Alternatively, a selective uptake can be realized without any specific attraction of solutes to the network, which is shown in this paper. By combining experimental and simulation approaches, we demonstrated that thermoresponsive poly(N-isopropylacrylamide) gels and microgels in compositionally strongly asymmetric water/1-octanol mixtures selectively uptake the minor (1-octanol) component. Initially swollen in water, the gels substitute water by the organic solvent upon the addition of its small fraction into aqueous solution. In turn, for microgels, it was shown that the single particles could absorb the amount of the organic liquid more than two times higher than their mass while preserving the colloidal stability. At the same time, the accumulation of 1-octanol in the networks "switches off" the temperature response. The mesoscopic computer simulations revealed a physical reason and molecular picture of the phenomenon. Absorption of the minor component by the gels is caused by the decrease in water/1-octanol interfacial tension due to the formation of the dense polymer layer at the interface. The simulations allowed tracking the evolution of the size and the internal structure of the single microgels with changing 1-octanol concentration.

19.
Macromolecules ; 53(18): 8108-8122, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35516458

RESUMO

Arborescent copolymers with a core-shell-corona (CSC) architecture were synthesized and the topology of the molecules was challenged (constrained) through intramolecular interactions, resulting in phase separation breaking the symmetry of radial density. The inner poly(2-vinylpyridine) shell of these arborescent polystyrene-g-[poly(2-vinylpyridine)-b-polystyrene] molecules can self-assemble by binding metallic salts and acids in apolar and intermediate-polarity solvents. Upon loading with HAuCl4, the characteristics of the polymer templates govern the "loading sites" of the metal within the molecules. Unique morphologies were observed for the metal-loaded G0-G4 arborescent copolymers investigated, namely, spherical, toroidal, raspberry-like, spherical nanocage, and a new worm-in-sphere morphology. The reason for the emergence of such morphologies is the interplay among intramolecular interactions of unlike polymer segments, solvent selectivity, the entropic elasticity of the arborescent substrate, and phase segregation induced by coordination with the charged metallic species. Meanwhile, the stability of the arborescent molecules against aggregation provides intramolecular phase segregation with imposed "confined" geometry and thus leads to nonconventional morphologies. Furthermore, the size of the arborescent molecules is much smaller than that of other known particles (droplets) serving as confined geometries. Computer simulations were used to model the mesostructure of the arborescent copolymers, to demonstrate the influence of solvent selectivity, together with HAuCl4 loading, on the evolution of the morphology of the macromolecules.

20.
ACS Macro Lett ; 9(5): 736-742, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35648562

RESUMO

It is known that microgels can serve as soft, permeable and stimuli-responsive alternative of solid colloidal particles to stabilize oil-water emulsions. The driving force for the adsorption of the microgels on interface of two immiscible liquids is a shielding of unfavorable oil-water contacts by adsorbed subchains, that is, the decrease of the surface tension between the liquids. Such phenomenon usually proceeds if volume fractions of the two liquids are comparable with each other and the microgel concentration is not high enough. The natural question arises: what is going on with the system in the opposite case of strongly asymmetric mixture (one of the liquids (oil) has a very small fraction) or high microgel concentration (the overall volume of the microgels exceeds the volume of the minor oil component)? Here we demonstrate that the microgels uptake the oil whose concentration within the microgels can be orders of magnitude higher than outside, leading to the additional microgel swelling (in comparison with the swelling in water). Thus, the microgels can serve as scavengers and concentrators of liquids dissolved in water. At first glance, this effect seems counterintuitive. However, it has a clear physical reason related to the incompatibility of oil and water. Absorption of the oil by microgels reduces unfavorable oil-water contacts by microgel segments: the microgels have a higher concentration of the segments at the periphery, forming a shell. The microgels with uptaken oil are stable toward aggregation at very small oil concentration in the mixture. However, an increase in the oil concentration can lead to aggregation of the microgels into dimers, trimers, and so on. The increasing concentration of oil mediates the attraction between the microgels: the oil in the aggregates appears to be localized in-between the microgels instead of their interior, which is accompanied by the release of the elastic stress of the microgels. A further increase in the oil concentration results in a growth of the size of the oil droplets between the microgels and the number of the microgels at the droplet's periphery, that is, the emulsion is formed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA