Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gene Ther ; 31(5-6): 234-241, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135787

RESUMO

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.


Assuntos
Cistatina B , Terapia Genética , Camundongos Knockout , Doenças Neuroinflamatórias , Animais , Camundongos , Terapia Genética/métodos , Cistatina B/genética , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/genética , Humanos , Ataxia/genética , Ataxia/terapia , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/terapia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem
2.
J Cutan Pathol ; 51(4): 262-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124373

RESUMO

Primary cutaneous SMARCA4-deficient undifferentiated malignant neoplasm (SD-UMN) is a rare and recently described entity characterized by the loss of expression of the SMARCA4 (BRG1) protein, which is involved in chromatin remodeling. SD-UMN presents a diagnostic challenge due to its rarity and unique histopathological and immunohistochemical features. In this report, we present a case of primary cutaneous SD-UMN in a 67-year-old man who presented with a rapidly growing, ulcerated, and bleeding nodule on his right cheek. Histopathological examination revealed a highly cellular dermal tumor consisting of pleomorphic epithelioid cells with prominent mitotic figures and necrosis, lacking any morphological evidence of differentiation. Immunohistochemical analysis showed a complete loss of SMARCA4 and SMARCA2 expression, while INI-1 expression remained intact. p53 was diffusely expressed, and p16 was completely absent. In addition, a range of markers, including high-molecular-weight cytokeratin, p63, SOX10, INSM1, MCPyV, NKX2.2, CD99, CDX2, CD56, ERG, NUT, desmin, androgen receptor, chromogranin, CD34, and CD43 were all negative. To date, only two cases of primary cutaneous SMARCA4-deficient undifferentiated tumors have been reported in the literature. Therefore, this case report adds to the limited body of knowledge on the clinical and histopathological features of this novel entity. The report highlights the importance of considering SD-UMN in the differential diagnosis of undifferentiated cutaneous tumors.


Assuntos
Carcinoma , Sarcoma , Masculino , Humanos , Idoso , Sarcoma/patologia , Carcinoma/patologia , Biomarcadores Tumorais/análise , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição , Proteínas Repressoras
3.
Nat Methods ; 17(8): 807-814, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32737473

RESUMO

Enhancers are important non-coding elements, but they have traditionally been hard to characterize experimentally. The development of massively parallel assays allows the characterization of large numbers of enhancers for the first time. Here, we developed a framework using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features. We integrated these features with supervised machine-learning algorithms to predict enhancers. We further demonstrated that our model could be transferred to predict enhancers in mammals. We comprehensively validated the predictions using a combination of in vivo and in vitro approaches, involving transgenic assays in mice and transduction-based reporter assays in human cell lines (153 enhancers in total). The results confirmed that our model can accurately predict enhancers in different species without re-parameterization. Finally, we examined the transcription factor binding patterns at predicted enhancers versus promoters. We demonstrated that these patterns enable the construction of a secondary model that effectively distinguishes enhancers and promoters.


Assuntos
Epigênese Genética/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Animais , Linhagem Celular , Drosophila , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Reprodutibilidade dos Testes
4.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511140

RESUMO

Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.


Assuntos
Glicogênio , Doença de Lafora , Proteínas Tirosina Fosfatases não Receptoras , Ubiquitina-Proteína Ligases , Animais , Camundongos , Glicogênio/metabolismo , Doença de Lafora/genética , Doença de Lafora/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
5.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347645

RESUMO

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Assuntos
Doença de Lafora , MicroRNAs , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso , Doenças Neuroinflamatórias
6.
Neurotherapeutics ; 18(2): 1414-1425, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33830476

RESUMO

Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.


Assuntos
Encéfalo/metabolismo , Glucanos/metabolismo , Doença de Depósito de Glicogênio/genética , Glicogênio Sintase/genética , Glicogênio/metabolismo , Doença de Lafora/genética , Doenças do Sistema Nervoso/genética , Doenças Neuroinflamatórias/genética , RNA Mensageiro/metabolismo , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Edição de Genes , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/terapia , Doença de Lafora/metabolismo , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/terapia , Estudo de Prova de Conceito
7.
J Acquir Immune Defic Syndr ; 79(3): 394-398, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30063647

RESUMO

BACKGROUND: Throughout the world, there are antiretroviral therapy-naive HIV+ individuals who maintain elevated peripheral CD4 T-cell counts, historically referred to as long-term nonprogressors (LTNPs). With recent improvements in viral load (VL) detection methods to levels as low as 20 copies per milliliter, 2 subsets of LTNPs have been defined: elite controllers (ECs), with undetectable VLs for at least 6-12 months, and viremic controllers (VCs), with VLs between 200 and 2000 copies per milliliter. ECs and VCs have been extensively studied in the developed world to determine underlying mechanisms responsible for virologic control. In sub-Saharan Africa, most studies have characterized LTNPs based on immunologic criteria making it difficult to compare findings with the Western cohorts, which use virologic criteria. Here, we describe a cohort of Uganda ECs and VCs attending a large HIV ambulatory center in Kampala, Uganda, based initially on CD4 counts and confirmed by repeated VL measurements. METHODS: A cross-sectional study was conducted among 14,492 HIV-infected, antiretroviral therapy-naive individuals aged 18 years and older under care for at least 5 years with serial peripheral CD4 counts ≥500 cells/µL. Among those, we determined the frequency of individuals with VLs <2000 copies per milliliter for at least 6 months. RESULTS: We report a prevalence of 0.26% (38/14,492) of HIV controllers in the clinic. We identified 36 ECs and 2 VCs. These individuals were middle-aged with an average CD4 count of 858 ± 172 (mean ± SD, 95% confidence interval: 795 to 921). Their average duration in HIV care was 7.4 ± 2.1 years (mean ± SD, 95% confidence interval: 6.6 to 8.1). The majority of EC/VCs were women (87%, 33/38), reflecting the demographics of the urban clinic. CONCLUSIONS: For the first time, this study demonstrates the frequency of EC/VCs in a large urban clinic in Uganda. Further study of these East African subjects may provide insights into how some individuals are able to control HIV in the absence of medications.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , Sobreviventes de Longo Prazo ao HIV , Carga Viral , Adulto , Contagem de Linfócito CD4 , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA