Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanotechnology ; 27(41): 415701, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27585547

RESUMO

One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water.

2.
Phys Chem Chem Phys ; 16(16): 7521-30, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24626876

RESUMO

The CuO-ZnO composite was deposited onto two kinds of titania supports, which are synthetic mesoporous TiO2 and commercial TiO2 P25 (Degussa), via the ultrasound assisted precipitation and incipient wetness impregnation (IWI) methods, respectively. The catalysts were tested for WGS reaction in the temperature range of 200-400 °C, and the best catalytic performance was achieved for the sonochemically prepared catalysts supported on the commercial TiO2 P25, which contains well crystallized anatase and rutile phases. Although the synthetic mesoporous TiO2 has a higher surface area, its textural structure is not stable under the reaction conditions, leading to gradual deactivation of the CuO-ZnO/TiO2 catalyst. It is found that the sonochemical preparation offers at least two advantages: (1) generation of mesopores on the catalyst surface and (2) doping of ZnO into the CuO phase. The doping of ZnO, particularly in the case of commercial TiO2 P25, provides high activity and extra stability to the active phase of Cu(0). These new findings provide new insights into the design and development of better heterogeneous catalysts for WGS reaction.

3.
Langmuir ; 28(39): 14090-9, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22950638

RESUMO

Hematite (α-Fe(2)O(3)) is a nontoxic, stable, versatile material that is widely used in catalysis and sensors. Its functionality in sensing organic molecules such as acetone is of great interest because it can result in potential medical applications. In this report, microwave irradiation is applied in the preparation of one-dimensional (1D) α-FeOOH, thereby simplifying our previous hydrothermal method and reducing the reaction time to just a few minutes. Upon calcination, the sample was converted to porous α-Fe(2)O(3) nanorods, which were then decorated homogeneously by fine Au particles, yielding Au/1D α-Fe(2)O(3) at nominally 3 wt % Au. After calcination, the sample was tested as a potential sensor for acetone in the parts per million range and compared to a similarly loaded Pt sample and the pure 1D α-Fe(2)O(3) support. Gold addition results in a much enhanced response whereas Pt confers little or no improvement. From tests on acetone in the 1-100 ppm range in humid air, Au/1D α-Fe(2)O(3) has a fast response, short recovery time, and an almost linear response to the acetone concentration. The optimum working temperature was found to be 270 °C, which was judged to be a compromise between the thermal activation of lattice oxygen in hematite and the propensity for acetone adsorption. The surface reaction was investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and a possible sensing mechanism is proposed. The presence of Au nanoparticles is believed to promote the dissociation of molecular oxygen better in replenishing O vacancies, thereby increasing the instantaneous supply of lattice oxygen to the oxidation of acetone (to H(2)O and CO(2)), which proceeds through an adsorbed acetate intermediate. This work contributes to the development of next-generation sensors, which offer ultrahigh detection capabilities for organic molecules.


Assuntos
Acetona/química , Compostos Férricos/química , Ouro/química , Micro-Ondas , Compostos Férricos/síntese química , Tamanho da Partícula , Propriedades de Superfície
4.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080078

RESUMO

CO/CO2 hydrogenation has attracted much attention as a pathway to achieve carbon neutrality and production of synthetic natural gas (SNG). In this work, two-dimensional NiAl layered double oxide (2D NiAl-LDO) has been successfully decorated by SiO2 nanoparticles derived from SiCl4 and used as CO/CO2 methanation catalysts. The as-obtained H-SiO2-NiAl-LDO exhibited a large specific surface area of 201 m2/g as well as high ratio of metallic Ni0 species and surface adsorption oxygen that were beneficial for low-temperature methanation of CO/CO2. The conversion of CO methanation was 99% at 400 °C, and that of CO2 was 90% at 350 °C. At 250 °C, the CO methanation reached 85% whereas that of CO2 reached 23% at 200 °C. We believe that this provides a simple method to improve the methanation performance of CO and CO2 and a strategy for the modification of other similar catalysts.

5.
Polymers (Basel) ; 14(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567077

RESUMO

Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m-2·h-1 to 172.84 L·m-2·h-1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.

6.
Polymers (Basel) ; 13(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833171

RESUMO

Membrane properties are highly affected by the composition of the polymer solutions that make up the membrane material and their influence in the filtration performance on the separation or purification process. This paper studies the effects of the addition of pluronic (Plu) and patchouli oil (PO) in a polyethersulfone (PES) solution on the membrane morphology, membrane hydrophilicity, and filtration performance in the pesticide removal compound in the water sample. Three types of membranes with the composition of PES, PES + Plu, and PES + Plu + patchouli oil were prepared through a polymer phase inversion technique in an aqueous solvent. The resulting membranes were then analyzed and tested for their mechanical properties, hydrophilicity, antimicrobial properties, and filtration performance (cross-flow ultrafiltration). The results show that all of the prepared membranes could reject 75% of the pesticide. The modification of the PES membrane with Plu was shown to increase the overall pore size by altering the pore morphology of the pristine PES, which eventually increased the permeation flux of the ultrafiltration process. Furthermore, patchouli oil added antimicrobial properties, potentially minimizing the biofilm formation on the membrane surface.

7.
Polymers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771192

RESUMO

α-Lactalbumin is an essential protein with multiple roles in physiological and the nutritional functionalities, such as diabetic prevention, blood pressure stabilization, and cancer cell inhibition. In the present work, polyethersulfone (PES)-based membranes were developed by incorporating Pluronic F127 and carbon nanotubes with single- and multi-walled dimensions (Sw-Cnts and Mw-Cnts) as additives. The resulting membranes were evaluated for use in the filtration of α-lactalbumin protein solution. Four series of membranes, including PES pristine membrane, were fabricated via the phase inversion process. The characteristics of the membrane samples were analyzed in terms of morphology, membrane surface hydrophilicity and roughness, and surface chemistry. The characterization results show that the incorporation of additive increased the surface wettability by reducing the surface water contact angle from 80.4° to 64.1° by adding F127 and Mw-Cnt additives. The highest pure water permeability of 135 L/(m2·h·bar) was also exhibited by the PES/F127/Mw-Cnt membrane. The performance of the modified membranes was clearly better than the pristine PSF for α-lactalbumin solution filtration. The permeability of α-lactalbumin solution increased from 9.0 L/(m2·h·bar) for the pristine PES membrane to 10.5, 11.0 and 11.5 L/(m2·h·bar) for membranes loaded with Pluronic F127, Sw-Cnts, and Mw-Cnts, respectively. Those increments corresponded to 17, 22, and 28%. Such increments could be achieved without altering the α-lactalbumin rejections of 80%. Remarkably, the rejection for the membrane loaded with Sw-Cnts even increased to 89%.

8.
Membranes (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832104

RESUMO

Tapioca processing industries are very popular in the rural community to produce a variety of foods as the end products. Due to their small scales and scattered locations, they require robust modular systems to operate at low capacity with minimum supervision. This study explores the application of a novel sequencing batch-integrated fixed-film activated sludge membrane (SB-IFASM) process to treat tapioca processing wastewater for reuse purposes. The SB-IFASM employed a gravity-driven system and utilizes biofilm to enhance biodegradation without requiring membrane cleaning. The SB-IFASM utilizes the biofilm as a secondary biodegradation stage to enhance the permeate quality applicable for reuse. A lab-scale SB-IFASM was developed, preliminarily assessed, and used to treat synthetic tapioca processing industry wastewater. The results of short-term filtration tests showed the significant impact of hydrostatic pressure on membrane compaction and instant cake layer formation. Increasing the pressure from 2.2 to 10 kPa lowered the permeability of clean water and activated sludge from 720 to 425 and from 110 to 50 L/m2·h bar, respectively. The unsteady-state operation of the SB-IFASM showed the prominent role of the bio-cake in removing the organics reaching the permeate quality suitable for reuse. High COD removals of 63-98% demonstrated the prominence contribution of the biofilm in enhancing biological performance and ultimate COD removals of >93% make it very attractive for application in small-scale tapioca processing industries. However, the biological ecosystem was unstable, as shown by foaming that deteriorated permeability and was detrimental to the organic removal. Further developments are still required, particularly to address the biological stability and low permeability.

9.
ACS Appl Mater Interfaces ; 4(3): 1295-302, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22364243

RESUMO

Porous cubic Cu microparticles were synthesized by a facile solvothermal method using Cu(CH(3)COO)(2)·H(2)O as the Cu precursor and NaOH in a solution containing ethanol, ethylene glycol, and water. The synthesis conditions were investigated and a growth process of porous cubic Cu microparticles was proposed. The catalytic properties of the porous Cu microparticles as model copper catalysts for Rochow reaction were explored. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, temperature-programmed reduction, and nitrogen adsorption. It was found that the morphology and structure of the porous cubic Cu microparticles are highly dependent on the reaction time and temperature as well as on the amount of reactants added. Compared to the commercial Cu microparticles with irregular morphology and dense internal structure, porous cubic Cu microparticles show much higher dimethyldichlorosilane selectivity and Si conversion via Rochow reaction, which are attributed to the enhanced formation of active Cu(x)Si phase and gas transportation in the presence of the pore system within microparticles, demonstrating the significance of the pore structure of the copper catalysts in catalytic reactions of organosilane synthesis.

10.
J Hazard Mater ; 194: 162-8, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-21862215

RESUMO

We report the synthesis and activation of colloidal carbon nanospheres (CNS) for adsorption of Ag(I) ions from aqueous solutions. CNS (400-500 nm in diameter) was synthesized via simple hydrothermal treatment of glucose solution. The surface of nonporous CNS after being activated by NaOH was enriched with -OH and -COO(-) functional groups. Despite the low surface area (<15m(2)/g), the activated CNS exhibited a high adsorption capacity of 152 mg silver/g. Under batch conditions, all Ag(I) ions can be completely adsorbed in less than 6 min with the initial Ag(I) concentrations lower than 2 ppm. This can be attributed to the minimum mass transfer resistance as Ag(I) ions were all deposited and reduced as Ag(0) nanoparticles on the external surface of CNS. The kinetic data can be well fitted to the pseudo-second-order kinetics model. The adsorbed silver can be easily recovered by dilute acid solutions and the CNS can be reactivated by the same treatment with NaOH solution. The excellent adsorption performance and reusability have also been demonstrated in a continuous mode. The NaOH activated CNS reported here could represent a new type of low-cost and efficient adsorbent nanomaterials for removal of trace Ag(I) ions for drinking water production.


Assuntos
Carbono/química , Nanosferas , Prata/química , Água/química , Adsorção , Cinética , Microscopia Eletrônica de Varredura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
ACS Nano ; 5(12): 10033-40, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22077241

RESUMO

The currently applied disinfection methods during water treatment provide effective solutions to kill pathogens, but also generate harmful byproducts, which are required to be treated with additional efforts. In this work, an alternative and safer water disinfection system consisting of silver nanoparticle/multiwalled carbon nanotubes (Ag/MWNTs) coated on a polyacrylonitrile (PAN) hollow fiber membrane, Ag/MWNTs/PAN, has been developed. Silver nanoparticles of controlled sizes were coated on polyethylene glycol-grafted MWNTs. Ag/MWNTs were then covalently coated on the external surface of a chemically modified PAN hollow fiber membrane to act as a disinfection barrier. A continuous filtration test using E. coli containing feedwater was conducted for the pristine PAN and Ag/MWNTs/PAN composite membranes. The Ag/MWNT coating significantly enhanced the antimicrobial activities and antifouling properties of the membrane against E. coli. Under the continuous filtration mode using E. coli feedwater, the relative flux drop over Ag/MWNTs/PAN was 6%, which was significantly lower than that over the pristine PAN (55%) at 20 h of filtration. The presence of the Ag/MWNT disinfection layer effectively inhibited the growth of bacteria in the filtration module and prevented the formation of biofilm on the surface of the membrane. Such distinctive antimicrobial properties of the composite membrane is attributed to the proper dispersion of silver nanoparticles on the external surface of the membrane, leading to direct contact with bacterium cells.


Assuntos
Incrustação Biológica/prevenção & controle , Escherichia coli/isolamento & purificação , Membranas Artificiais , Nanotubos de Carbono/química , Prata/química , Ultrafiltração/métodos , Purificação da Água/métodos , Adsorção , Teste de Materiais , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Porosidade , Microbiologia da Água , Poluentes da Água/isolamento & purificação
12.
J Colloid Interface Sci ; 352(2): 393-400, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20846664

RESUMO

Shape-controlled synthesis of calcium carbonate with specific polymorphs can be achieved by the assistance of organic additives. In this study, highly uniform nanosized calcium carbonate spheres were synthesized by a fast precipitation method in the presence of a simple polymer, poly(styrene sulfonate) (PSS). The polymorph of the synthesized calcium carbonate products changes from pure calcite in PSS-free reactions to vaterite in PSS-containing (1-50 g/L) reactions. The effect of PSS on the formation of vaterite can be attributed to the two aspects: decrease of driving force by reducing the interfacial energy, and phase stabilization effect caused by the adsorbed PSS. A higher PSS concentration (50 g/L) results in highly uniform vaterite nanospheres of 400-500 nm in diameter. Furthermore, PSS is found more effective to induce the formation of vaterite in the Ca(2+)-rich reaction condition (Ca(2+):CO(3)(2-)=5:1) than in the CO(3)(2-)-rich conditions (Ca(2+):CO(3)(2-)=1:5). It has also been found that different mixing mode of the calcium and carbonate precursor solutions has a significant influence on the size distribution of the products. Finally, with a controlled anion-exchange method, the as-prepared vaterite nanospheres can be easily transformed to hollow hydroxyapatite spheres, which exhibit great potential to be used as the drug carriers due to their considerably high surface area and biocompatibility.


Assuntos
Carbonato de Cálcio/síntese química , Durapatita/química , Nanosferas/química , Poliestirenos/química , Carbonato de Cálcio/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
13.
J Colloid Interface Sci ; 339(1): 69-77, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19660764

RESUMO

The understanding of the role of polyelectrolytes in the synthesis of inorganic materials could provide effective routes towards design of advanced materials. In this study, negatively charged poly(styrene sulfonate) (PSS) is employed as a modifier in hydrothermal synthesis of hydroxyapatite (HA). The results indicate that both the morphology and particle size could be well controlled by adjusting the PSS concentration. The presence of PSS (within the range of 0-9.6wt%) modified the growth pattern of HA crystallites and results in particles from the ribbons to microspheres. The building units of various microspheres change from nanofibers to nanorods or nanoplates. Along with that, the microspheres become smaller and more compact at higher PSS concentrations. The adsorption of PSS onto certain crystal faces as well as the complexing effect of PSS with Ca(2+) can be considered as the controlling factors which determine the influence of PSS on the growth mode. The drug release study indicates that the flower-like HA microspheres can be possibly used as effective carriers for biomedical applications. The present synthesis method is simple and controllable, and can provide a convenient route to synthesize uniform HA microspheres with different sizes and hierarchical structures.


Assuntos
Durapatita/química , Microesferas , Poliestirenos/química , Sistemas de Liberação de Medicamentos , Ibuprofeno/administração & dosagem , Teste de Materiais , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Difração de Raios X
14.
J Pharm Sci ; 97(10): 4367-78, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18271032

RESUMO

We report the control of drug release rate from Mg(2)Al-layered double hydroxides (Mg(2)Al-LDHs) intercalated with ibuprofen as a model drug. Different aggregation states in the dry powders of ibuprofen intercalated Mg(2)Al-LDHs can be obtained due to different particle interactions by changing the materials synthesis parameters including the solvent system and aging conditions. Compared with the samples prepared in water alone or aged at atmospheric conditions (70 degrees C, 3 days), the sample synthesized in the mixture of ethylene glycol and water (volume ratio of 1:1) and aged hydrothermally (150 degrees C, 18 h) exhibits a more stable suspension of regularly shaped and larger LDH platelets (ca. 450 nm). Upon drying, it forms relatively oriented dense powder through preferential face-to-face and edge-to-edge aggregation. The release rate of ibuprofen from such dense powder is considerably lower compared with those from the loose powders. This can be attributed to a less breakdown of aggregates, a longer diffusion path length and a higher diffusion resistance in the oriented solid matrix.


Assuntos
Hidróxido de Alumínio/química , Hidróxido de Magnésio/química , Farmacocinética , Cristalografia por Raios X , Etilenoglicol/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA