Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 19(2): 1104-1111, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608697

RESUMO

Many-body interactions in photoexcited semiconductors can bring about strongly interacting electronic states, culminating in the fully ionized matter of electron-hole plasma (EHP) and electron-hole liquid (EHL). These exotic phases exhibit unique electronic properties, such as metallic conductivity and metastable high photoexcitation density, which can be the basis for future transformative applications. However, the cryogenic condition required for its formation has limited the study of dense plasma phases to a purely academic pursuit in a restricted parameter space. This paradigm can potentially change with the recent experimental observation of these phases in atomically thin MoS2 and MoTe2 at room temperature. A fundamental understanding of EHP and EHL dynamics is critical for developing novel applications on this versatile layered platform. In this work, we studied the formation and dissipation of EHP in monolayer MoS2. Unlike previous results in bulk semiconductors, our results reveal that electromechanical material changes in monolayer MoS2 during photoexcitation play a significant role in dense EHP formation. Within the free-standing geometry, photoexcitation is accompanied by an unconstrained thermal expansion, resulting in a direct-to-indirect gap electronic transition at a critical lattice spacing and fluence. This dramatic altering of the material's energetic landscape extends carrier lifetimes by 2 orders of magnitude and allows the density required for EHP formation. The result is a stable dense plasma state that is sustained with modest optical photoexcitation. Our findings pave the way for novel applications based on dense plasma states in two-dimensional semiconductors.

2.
J Am Chem Soc ; 141(19): 7955-7964, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017429

RESUMO

Three-dimensional (3D) hybrid organic-inorganic lead halide perovskites (HOIPs) feature remarkable optoelectronic properties for solar energy conversion but suffer from long-standing issues of environmental stability and lead toxicity. Associated two-dimensional (2D) analogues are garnering increasing interest due to superior chemical stability, structural diversity, and broader property tunability. Toward lead-free 2D HOIPs, double perovskites (DPs) with mixed-valent dual metals are attractive. Translation of mixed-metal DPs to iodides, with their prospectively lower bandgaps, represents an important target for semiconducting halide perovskites, but has so far proven inaccessible using traditional spacer cations due to either intrinsic instability or formation of competing non-perovskite phases. Here, we demonstrate the first example of a 2D Ag-Bi iodide DP with a direct bandgap of 2.00(2) eV, templated by a layer of bifunctionalized oligothiophene cations, i.e., (bis-aminoethyl)bithiophene, through a collective influence of aromatic interactions, hydrogen bonding, bidentate tethering, and structural rigidity. Hybrid density functional theory calculations for the new material reveal a direct bandgap, consistent with the experimental value, and relatively flat band edges derived principally from Ag-d/I-p (valence band) and Bi-p/I-p (conduction band) states. This work opens up new avenues for exploring specifically designed organic cations to stabilize otherwise inaccessible 2D HOIPs with potential applications for optoelectronics.

3.
J Phys Chem A ; 122(15): 3764-3771, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29613800

RESUMO

Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

4.
Nano Lett ; 17(10): 6056-6061, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28873308

RESUMO

We perform the transient absorption spectroscopy experiments to investigate the dynamics of the low-energy collective electron-hole excitations in α-copper phthalocyanine thin films. The results are interpreted in terms of the third-order nonlinear polarization response function. It is found that, initially excited in the molecular plane, the intramolecular Frenkel exciton polarization reorients with time to align along the molecular chain direction to form coupled Frenkel-charge-transfer exciton states, the eigenstates of the one-dimensional periodic molecular lattice. The process pinpoints the direction of the charge separation in α-copper phthalocyanine and similar organic molecular structures. Being able to observe and monitor such processes is important both for understanding the physical principles of organic thin film solar energy conversion device operation and for the development of organic optoelectronics in general.

5.
Phys Chem Chem Phys ; 17(4): 2750-6, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25500934

RESUMO

In this study, an intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands in Ru(ii) sensitizers for dye sensitized solar cells (DSCs) has been investigated using femtosecond transient absorption spectroscopy. Both anthracene and phenanthrene based sensitizers HD-7 and HD-8, respectively, resulted in a similar extinction coefficient, photophysical and thermodynamic free energy of electron injection and dye regeneration as measured by UV-Vis, excited state lifetime and cyclic voltammetry measurements, respectively. However, TiO2 adsorbed HD-7 resulted in up to 45% less photocurrent density than HD-8 although photovoltage was similar owing to comparable thermodynamic characteristics. It was obvious from the measurement of incident photon to current conversion efficiency (IPCE) that excited electrons in HD-7 are prone to internal energy loss before injection into the TiO2 conduction band. Analysis of photo-induced spectral features measured by femtosecond transient absorption spectroscopy showed that excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than HD-8 and those triplet electrons are not injected into TiO2 efficiently. Interestingly, from impedance measurements, HD-7 showed higher recombination resistance than HD-8 and N719, but a shorter lifetime for electrons injected into the TiO2 conduction band.


Assuntos
Antracenos/química , Corantes/química , Fontes de Energia Elétrica , Elétrons , Fenantrenos/química , Rutênio/química , Energia Solar , Adsorção , Eletroquímica , Isomerismo , Cinética , Ligantes , Fótons , Titânio/química
7.
Nano Lett ; 14(1): 202-6, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24325650

RESUMO

Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

8.
Opt Lett ; 39(6): 1521-4, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690828

RESUMO

We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

9.
Phys Chem Chem Phys ; 16(48): 27078-87, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25384752

RESUMO

Here we report two novel amphiphilic Ru(II) heteroleptic bipyridyl complexes, HD-14 and HD-15, compared to previously reported NCSU-10. We have combined the strong electron donor characteristics of carbazole and the hydrophobic nature of different long alkyl chains, C7, C18 and C2 (NCSU-10), tethered to N-carbazole to study their influence on photocurrent, photovoltage and long term stability for dye-sensitized solar cells. Photon harvesting efficiency and electron donating characteristics of carbazole-based ancillary ligands were found to be unaffected by different alkyl chain lengths. However, a slight drop in the Voc of HD-14 and HD-15 was observed compared to that of NCSU-10. It was found by nanosecond flash photolysis transient absorption (TA) measurements that the faster the dye regeneration the higher the photocurrent density response, and the dye regeneration time was found to be 2.6, 3.6, and 3.7 µs for HD-14, HD-15, and N719 dyes, respectively. The difference in the amplitude of the transient absorption (TA) signal of the oxidized dye as measured by femtosecond TA studies is in excellent agreement with the photocurrent generated, which was in the following order HD-14 > HD-15 > N719. Under 1000 h light soaking conditions, HD-15 maintained up to 98% (only 2% loss) of the initial power conversion efficiency compared to 8% loss for HD-14 and 22% loss in the power conversion efficiency for NCSU-10. HD-15 was strikingly stable to light soaking conditions when employed in the presence of an ionic liquid electrolyte, which paves the way for widespread applications of dye-sensitized solar cells with long term stability. The total power conversion efficiency (η) was 9.27% for HD-14 and 9.17% for HD-15 compared to 8.92% for N719.

10.
Proc Natl Acad Sci U S A ; 107(41): 17503-8, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876145

RESUMO

In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG.


Assuntos
Química/métodos , Hidrogênio/química , Conformação Molecular , Silício/química , Anisotropia , Modelos Químicos , Dinâmica não Linear , Oxirredução
11.
Adv Mater ; : e2211284, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841548

RESUMO

Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.

12.
ACS Appl Mater Interfaces ; 14(42): 47961-47970, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36218301

RESUMO

In organic solar cells (OSCs), a thick active layer usually yields a higher photocurrent with broader optical absorption than a thin active layer. In fact, a ∼300 nm thick active layer is more compatible with large-area processing methods and theoretically should be a better spot for efficiency optimization. However, the bottleneck of developing high-efficiency thick-film OSCs is the loss in fill factor (FF). The origin of the FF loss is not clearly understood, and there a direct method to identify photoactive materials for high-efficiency thick-film OSCs is lacking. Here, we demonstrate that the mobility field-dependent coefficient is an important parameter directly determining the FF loss in thick-film OSCs. Simulation results based on the drift-diffusion model reveal that a mobility field-dependent coefficient smaller than 10-3 (V/cm)-1/2 is required to maintain a good FF in thick-film devices. To confirm our simulation results, we studied the performance of two ternary bulk heterojunction (BHJ) blends, PTQ10:N3:PC71BM and PM6:N3:PC71BM. We found that the PTQ10 blend film has weaker field-dependent mobilities, giving rise to a more balanced electron-hole transport at low fields. While both the PM6 blend and PTQ10 blend yield good performance in thin-film devices (∼100 nm), only the PTQ10 blend can retain a FF = 74% with an active layer thickness of up to 300 nm. Combining the benefits of a higher JSC in thick-film devices, we achieved a PCE of 16.8% in a 300 nm thick PTQ10:N3:PC71BM OSC. Such a high FF in the thick-film PTQ10 blend is also consistent with the observation of lower charge recombination from light-intensity-dependent measurements and lower energetic disorder observed in photothermal deflection spectroscopy.

13.
Rev Sci Instrum ; 92(10): 104706, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717443

RESUMO

Recent breakthroughs in material development have increased the demand for characterization methods capable of probing nanoscale features on ultrafast time scales. As the sample reduces to atomically thin levels, an extremely low-level signal limits the feasibility of many experiments. Here, we present an affordable and easy-to-implement solution to expand the maximum sensitivity of lock-in detection systems used in transient absorption spectroscopy by multiple orders of magnitude. By implementation of a tuned RC circuit to the output of an avalanche photodiode, electric pulse shaping allows for vastly improved lock-in detection. Furthermore, a carefully designed "peak detector" circuit provides additional pulse shaping benefits, resulting in even more lock-in detection signal enhancement. We demonstrate the improvement of lock-in detection with each of these schemes by performing benchmark measurements of a white-light continuum signal and micro-transient absorption spectroscopy on a few-layer transition metal dichalcogenide sample. Our results show the practicality of ultrafast pump-probe spectroscopy for many high-sensitivity experimental schemes.

14.
Acc Chem Res ; 42(9): 1452-61, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19691277

RESUMO

The Coulomb correlations between photoexcited charged particles in materials such as photosynthetic complexes, conjugated polymer systems, J-aggregates, and bulk or nanostructured semiconductors produce a hierarchy of collective electronic excitations, for example, excitons, and biexcitons, which may be harnessed for applications in quantum optics, light-harvesting, or quantum information technologies. These excitations represent correlations among successively greater numbers of electrons and holes, and their associated multiple-quantum coherences could reveal detailed information about complex many-body interactions and dynamics. However, unlike single-quantum coherences involving excitons, multiple-quantum coherences do not radiate; consequently, they have largely eluded direct observation and characterization. In this Account, we present a novel optical technique, two-quantum, two-dimensional Fourier transform optical spectroscopy (2Q 2D FTOPT), which allows direct observation of the dynamics of multiple exciton states that reflect the correlations of their constituent electrons and holes. The approach is based on closely analogous methods in NMR, in which multiple phase-coherent fields are used to drive successive transitions such that multiple-quantum coherences can be accessed and probed. In 2Q 2D FTOPT, a spatiotemporal femtosecond pulse-shaping technique has been used to overcome the challenge of control over multiple, noncollinear, phase-coherent optical fields in experimental geometries used to isolate selected signal contributions through wavevector matching. We present results from a prototype GaAs quantum well system, which reveal distinct coherences of biexcitons that are formed from two identical excitons or from two excitons that have holes in different spin sublevels ("heavy-hole" and "light-hole" excitons). The biexciton binding energies and dephasing dynamics are determined, and changes in the dephasing rates as a function of the excitation density are observed, revealing still higher order correlations due to exciton-biexciton interactions. Two-quantum coherences due to four-particle correlations that do not involve bound biexciton states but that influence the exciton properties are also observed and characterized. The 2Q 2D FTOPT technique allows many-body interactions that cannot be treated with a mean-field approximation to be studied in detail; the pulse-shaping approach simplifies greatly what would have otherwise been daunting measurements. This spectroscopic tool might soon offer insight into specific applications, for example, in detailing the interactions that affect how electronic energy moves within the strata of organic photovoltaic cells.

15.
ACS Appl Mater Interfaces ; 12(28): 31667-31676, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538607

RESUMO

A typical top-emitting organic light-emitting diode (OLED) has a strong microcavity effect because of the two reflective electrodes. The cavity effect causes a serious color shift with the viewing angles and restricts the organic layer thickness. To overcome these drawbacks, we design a multi-mode OLED structure with dual-dielectric spacer layers, which extend the cavity length by more than 10 times. This design completely eliminates the intrinsic cavity effect caused by the top and bottom boundaries and provides freedom for the organic layer thickness. We demonstrate these effects in a white multi-mode OLED using a white emitter, which shows a negligible angular chromaticity shift of Δuv = 0.006 from 0 to 70° and a Lambertian emission profile. The simple design and the perfect angular color profiles make the multi-mode OLED structure promising in large-area displays and solid-state lighting applications.

16.
Adv Mater ; 32(49): e2005386, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33150672

RESUMO

Organic solar cells (OSCs) based on D18:Y6 have recently exhibited a record power conversion efficiency of over 18%. The initial work is extended and the device performance of D18-based OSCs is compared with three non-fullerene acceptors, Y6, IT-4F, and IEICO-4Cl, and their molecular packing characteristics and miscibility are studied. The D18 polymer shows unusually strong chain extension and excellent backbone ordering in all films, which likely contributes to the excellent hole-transporting properties. Thermodynamic characterization indicates a room-temperature miscibility for D18:Y6 and D18:IT-4F near the percolation threshold. This corresponds to an ideal quench depth and explains the use of solvent vapor annealing rather than thermal annealing. In contrast, D18:IEICO-4Cl is a low-miscibility system with a deep quench depth during casting and poor morphology control and low performance. A failure of ternary blends with PC71 BM is likely due to the near-ideal miscibility of Y6 to begin with and indicates that strategies for developing successful ternary or quaternary solar cells are likely very different for D18 than for other high-performing donors. This work reveals several unique property-performance relations of D18-based photovoltaic devices and helps guide design or fabrication of yet higher efficiency OSCs.

17.
ACS Appl Mater Interfaces ; 12(43): 48845-48853, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33064440

RESUMO

Perovskite light-emitting diodes have been gaining attention in recent years due to their high efficiencies. Despite of the recent progress made in device efficiency, the operation mechanisms of these devices are still not well understood, especially the effects of ion migration. In this work, the role of ion migration is investigated by measuring the transient electroluminescence and current responses, with both the current and efficiency showing a slow response in a time scale of tens of milliseconds. The results of the charge injection dynamics show that the slow response of the current is attributed to the migration and accumulation of halide ions at the anode interface, facilitating hole injection and leading to a strong charge imbalance. Further, the results of the charge recombination dynamics show that the slow response of the efficiency is attributed to enhanced charge injection facilitated by ion migration, which leads to an increased carrier density favoring bimolecular radiative recombination. Through a combined analysis of both charge injection and recombination dynamics, we finally present a comprehensive picture of the role of ion migration in device operation.

18.
Adv Mater ; 32(16): e1906571, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108964

RESUMO

Quasi-2D Ruddlesden-Popper halide perovskites with a large exciton binding energy, self-assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi-2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower-dimensional nanosheets (high-bandgap domains) to 3D nanocrystals (low-bandgap domains). High-quality quasi-2D perovskite (PEA)2 (FA)3 Pb4 Br13 films are fabricated by solution engineering. Grazing-incidence wide-angle X-ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge-carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high-bandgap domains to the low-bandgap domains (<0.5 ps) compared to the randomly oriented films. High-performance light-emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm-2 is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi-2D films to achieve efficient energy transfer, which is a critical requirement for light-emitting devices.

19.
J Phys Chem B ; 113(23): 7991-4, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19441845

RESUMO

The spectral position of C-D stretching absorptions in the so-called "transparent window" of protein absorption (1800-2300 cm(-1)) makes them well suited as probes of protein dynamics with high temporal and structural resolution. We have previously incorporated single deuterated amino acids into proteins to site-selectively follow protein folding and ligand binding by steady-state FT IR spectroscopy. Ultimately, our goal is to use C-D bonds as probes in time-resolved IR spectroscopy to study dynamics and intramolecular vibrational energy redistribution (IVR) in proteins. As a step toward this goal, we now present the first time-resolved experiments characterizing the population and dephasing dynamics of selectively excited C-D bonds in a deuterated amino acid. Three differently deuterated, Boc-protected leucines were selected to systematically alter the number of additional C-D bonds that may mediate IVR out of the initially populated bright C-D stretching mode. Three-pulse photon echo experiments show that the steady-state C-D absorption linewidths are broadened by both homogeneous and inhomogeneous effects, and transient grating experiments reveal that IVR occurs on a subpicosecond time scale and is nonstatistical. The results have important implications for the interpretation of steady-state C-D spectra and demonstrate the potential utility of C-D bonds as probes of dynamics and IVR within a protein.


Assuntos
Carbono/química , Deutério/química , Leucina/química , Proteínas/química
20.
J Chem Phys ; 131(14): 144510, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19831455

RESUMO

We demonstrate three-dimensional (3D) electronic Fourier transform spectroscopy of GaAs quantum wells using four fully phase-coherent, noncollinear optical fields. Since the full complex signal field is measured as a function of all three time intervals, nearly every peak in the resulting 3D spectral solid arises from a distinguishable sequence of transitions represented by a single Feynman pathway. We use the 3D spectral peaks to separate two pathways involving weakly bound mixed biexcitons generated in different time orders. In the process, we reveal a peak that was previously obscured by a correlated but unbound exciton pair coherence. We also demonstrate a calibration procedure for the carrier frequency which yields biexciton binding energy values with high accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA