Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(3): e2305369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679094

RESUMO

The growing demand for highly active nanozymes in various fields has led to the development of several strategies to enhance their activity. Plasmonic enhancement, a strategy used in heterogenous catalysis, represents a promising strategy to boost the activity of nanozymes. Herein, Pd-Au heteromeric nanoparticles (Pd-Au dimers) with well-defined heterointerfaces have been explored as plasmonic nanozymes. As a model system, the Pd-Au dimers with integrated peroxidase (POD)-like activity and plasmonic activity are used to investigate the effect of plasmons on enhancing the activity of nanozymes under visible light irradiation. Mechanistic studies revealed that the generation of hot electron-hole pairs plays a dominant role in plasmonic effect, and it greatly enhances the decomposition of H2 O2 to the reactive oxygen species (ROS) intermediates (•OH, •O2 - and 1 O2 ), leading to elevated POD-like activity of the Pd-Au dimers. Finally, the Pd-Au dimers are applied in the plasmon-enhanced colorimetric method for the detection of alkaline phosphatase, exhibiting broad linear range and low detection limit. This study not only provides a straightforward approach for regulating nanozyme activity through plasmonic heterostructures but also sheds light on the mechanism of plasmon-enhanced catalysis of nanozymes.


Assuntos
Colorimetria , Nanopartículas , Colorimetria/métodos , Catálise , Espécies Reativas de Oxigênio
2.
Small ; : e2400939, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618653

RESUMO

Heterodimers of metal nanocrystals (NCs) with tailored elemental distribution have emerged as promising candidates in the field of electrocatalysis, owing to their unique structures featuring heterogeneous interfaces with distinct components. Despite this, the rational synthesis of heterodimer NCs with similar elemental composition remains a formidable challenge, and their impact on electrocatalysis has remained largely elusive. In this study, Pd@Bi-PdBi heterodimer NCs are synthesized through an underpotential deposition (UPD)-directed growth pathway. In this pathway, the UPD of Bi promotes a Volmer-Weber growth mode, allowing for judicious modulation of core-satellite to heterodimer structures through careful control of supersaturation and growth kinetics. Significantly, the heterodimer NCs are employed in the electrocatalytic process of ethylene glycol (EG) with high activity and selectivity. Compared with pristine Pd octahedra and common PdBi alloy NC, the unique heterodimer structure of the Pd@Bi-PdBi heterodimer NCs endows them with the highest electrocatalytic performance of EG and the best selectivity (≈93%) in oxidizing EG to glycolic acid (GA). Taken together, this work not only heralds a new strategy for UPD-directed synthesis of bimetallic NCs, but also provides a new design paradigm for steering the selectivity of electrocatalysts.

3.
Phys Chem Chem Phys ; 26(7): 5773-5777, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38314869

RESUMO

CO-stripping experiments are employed as a highly structure-sensitive and in situ strategy to explore the mechanisms of plasmon-enhanced electrooxidation reactions. By using Pt-Au heterodimers as a model catalyst, the plasmon-induced current and potential changes on Pt and Au sites can be identified and explained.

4.
Plant J ; 110(1): 7-22, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218590

RESUMO

The leaf veins of higher plants contain a highly specialized vascular system comprised of xylem and phloem cells that transport water, organic compounds and mineral nutrients. The development of the vascular system is controlled by phytohormones that interact with complex transcriptional regulatory networks. Before the emergence of true leaves, the cotyledons of young seedlings perform photosynthesis that provides energy for the sustainable growth and survival of seedlings. However, the mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood, in part due to the complex cellular composition of this tissue. To better understand the development of leaf veins, we analyzed 14 117 single cells from 3-day-old cotyledons using single-cell RNA sequencing. Based on gene expression patterns, we identified 10 clusters of cells and traced their developmental trajectories. We discovered multiple new marker genes and developmental features of leaf veins. The transcription factor networks of some cell types indicated potential roles of CYCLING DOF FACTOR 5 (CDF5) and REPRESSOR OF GA (RGA) in the early development and function of the leaf veins in cotyledons. These new findings lay a foundation for understanding the early developmental dynamics of cotyledon veins. The mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood. In this study, we comprehensively characterized the early differentiation and development of leaf veins in 3-day-old cotyledons based on single-cell transcriptome analysis. We identified the cell types and novel marker genes of leaf veins and characterized the novel regulators of leaf vein.


Assuntos
Cotilédone , Regulação da Expressão Gênica de Plantas , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA/metabolismo , Plântula
5.
Plant J ; 112(1): 27-37, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904970

RESUMO

The recent and continuous improvement in single-cell RNA sequencing (scRNA-seq) technology has led to its emergence as an efficient experimental approach in plant research. However, compared with single-cell research in animals and humans, the application of scRNA-seq in plant research is limited by several challenges, including cell separation, cell type annotation, cellular function analysis, and cell-cell communication networks. In addition, the unavailability of corresponding reliable and stable analysis methods and standards has resulted in the relative decentralization of plant single-cell research. Considering these shortcomings, this review summarizes the research progress in plant leaf using scRNA-seq. In addition, it describes the corresponding feasible analytical methods and associated difficulties and problems encountered in the current research. In the end, we provide a speculative overview of the development of plant single-cell transcriptome research in the future.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Humanos , Folhas de Planta/genética , Projetos de Pesquisa , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
6.
J Org Chem ; 88(22): 15862-15870, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37910640

RESUMO

A facile tandem oxa-Nazarov cyclization and dibromination has been developed. The combination of Cu(OTf)2 and diphenyl phosphate (DPP-H) was found to synergistically promote the coupling of conjugated 1,2-diketones and N-bromosuccinimide to form 2,4-dibromo-3(2H)-furanones in good yields.

7.
BMC Psychiatry ; 23(1): 84, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732707

RESUMO

BACKGROUND: Poor sleep raises the risk of non-alcoholic fatty liver disease (NAFLD) and hastens disease progression. It is critical to figure out what factors impact the sleep quality of NAFLD patients. The present study aimed to investigate the role of anxiety symptoms in accounting for the impact of rumination on sleep quality and the moderating role of resilience on the associations of rumination with anxiety symptoms and sleep quality. METHODS: In the cross-sectional study, 285 NAFLD patients completed the Chinese version of the Pittsburgh Sleep Quality Index, the Ruminative Responses Scale, the Generalized Anxiety Disorder 7-item scale, and the 14-item Resilience Scale to measure sleep quality, rumination (including brooding and reflection), anxiety symptoms, and resilience, respectively. The PROCESS macro for SPSS v4.0 procedure was applied to perform moderated mediation analysis. RESULTS: The roles of anxiety symptoms in accounting for the positive associations of brooding, reflection and rumination with poor sleep quality were revealed. It was found that there was a significant moderating role of resilience on the positive associations of brooding, reflection and rumination with anxiety symptoms, which were gradually reduced as resilience increased. The direct associations between brooding, reflection and rumination and poor sleep quality were not significantly moderated by resilience. Thus, a moderated mediation model involving anxiety symptoms and resilience for explaining the impact of rumination on poor sleep quality was supported among patients with NAFLD. CONCLUSIONS: Rumination (including brooding and reflection) could be positively related to poor sleep quality, and anxiety symptoms had a significant role in accounting for the relationship among patients with NAFLD. Resilience showed a moderating role that could attenuate the positive association between rumination and anxiety symptoms. Interventions aimed at alleviating rumination, reducing anxiety symptoms, and enhancing resilience could improve the sleep quality of NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Qualidade do Sono , Estudos Transversais , Ansiedade/complicações , Depressão
8.
Angew Chem Int Ed Engl ; 62(25): e202217701, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37071488

RESUMO

The oxide-zeolite (OXZEO) catalyst design concept has been demonstrated in an increasing number of studies as an alternative avenue for direct syngas conversion to light olefins. We report that face-centered cubic (FCC) MnGaOx -Spinel gives 40 % CO conversion, 81 % light olefins selectivity, and a 0.17 g gcat -1 h-1 space-time yield of light olefins in combination with SAPO-18. In comparison, solid solution MnGaOx (characterized by Mn-doped hexagonal close-packed (HCP) Ga2 O3 ) with a similar chemical composition gives a much inferior activity, i.e., the specific surface activity is one order of magnitude lower than the spinel oxide. Photoluminescence (PL), in situ Fourier-transform infrared (FT-IR), and density functional theory (DFT) calculations indicate that the superior activity of MnGaOx -Spinel can be attributed to its higher reducibility (higher concentration of oxygen vacancies) and the presence of coordinatively unsaturated Ga3+ sites, which facilitates the dissociation of the C-O bond via a more efficient ketene-acetate pathway to light olefins.


Assuntos
Alcenos , Óxido de Alumínio , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos
9.
J Am Chem Soc ; 144(10): 4321-4326, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35235317

RESUMO

Utilizing heterogeneous catalysts to overcome obstacles for homogeneous reactions is fascinating but very challenging owing to the difficult fabrication of such catalysts based on the character of target reactions. Herein, we report a Al3+ doping strategy to construct single-atom Cu on MgO nanosheets (Cu1/MgO(Al)) for boosting the free-radical hydrophosphinylation of alkenes. Al3+ dopants in MgO bring about abundant Mg2+ vacancies for stabilizing dense independent Cu atoms (6.3 wt %), while aggregated Cu nanoparticles are formed without Al3+ dopants (Cu/MgO). Cu1/MgO(Al) exhibits preeminent activity and durability in the hydrophosphinylation of various alkenes with great anti-Markovnikov selectivity (99%). The turnover frequency (TOF) value reaches up to 1272 h-1, exceeding those of Cu/MgO by ∼6-fold and of traditional homogeneous catalysts drastically. Further experimental and theoretical studies disclose that the prominent performance of Cu1/MgO(Al) derives from the accelerated initiating step of phosphinoyl radical triggered by individual Cu atoms.

10.
J Cell Sci ; 133(13)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32546534

RESUMO

The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.


Assuntos
Canais de Cálcio , Peixe-Zebra , Animais , Axônios/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1278-1288, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36082932

RESUMO

Obesity has now surpassed malnutrition and infectious diseases as the most significant contributor to health problems worldwide. In particular, obesity is associated with several metabolic disorders, including hyperlipidemia, hepatic steatosis, and subfertility. Genipin (GNP), the aglycone of geniposide, is isolated from the extract of the traditional Chinese medicine Gardenia jasminoides Ellis and has been used in traditional oriental medicine against several inflammation-driven diseases. However, the effect and molecular mechanism of GNP on obesity-associated dyslipidemia and sperm dysfunction still need to be explored. In this study, we detect the effects of GNP on hyperlipidemia, hepatic lipid accumulation and sperm function using a high-fat diet (HFD)-induced obese mouse model. We find that obese mice treated with GNP show an improvement in body weight, serum triglyceride levels, serum hormone levels, serum inflammatory cytokines, hepatic steatosis and sperm function. At the molecular level, HFD/GNP diversely regulates the expression of miR-132 in a tissue-specific manner. miR-132 further targets and regulates the expression of SREBP-1c in liver cells, as well as the expressions of SREBP-1c and StAR in Leydig cells in the testis, thus modifying lipogenesis and steroidogenesis, respectively. Collectively, our data demonstrate that GNP shows a broad effect on the improvement of HFD-induced metabolic disorder and sperm dysfunction in male mice by tissue-specific regulation of miR-132. Our findings reveal the function GNP in ameliorating hepatic lipid metabolism and sperm function and suggest that this compound is a versatile drug to treat metabolic disorders.


Assuntos
Fígado Gorduroso , Hiperlipidemias , Doenças Metabólicas , MicroRNAs , Masculino , Animais , Camundongos , Metabolismo dos Lipídeos , Camundongos Obesos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sêmen/metabolismo , Fígado/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Hiperlipidemias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , MicroRNAs/metabolismo , Espermatozoides/metabolismo , Camundongos Endogâmicos C57BL
12.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563394

RESUMO

Cotton (Gossypium spp.) is an economically important natural fiber crop. The quality of cotton fiber has a substantial effect on the quality of cotton textiles. The identification of cotton fiber development-related genes and exploration of their biological functions will not only enhance our understanding of the elongation and developmental mechanisms of cotton fibers but also provide insights that could aid the cultivation of new cotton varieties with improved fiber quality. Cotton fibers are single cells that have been differentiated from the ovule epidermis and serve as a model system for research on single-cell differentiation, growth, and fiber production. Genes and fiber formation mechanisms are examined in this review to shed new light on how important phytohormones, transcription factors, proteins, and genes linked to fiber development work together. Plant hormones, which occur in low quantities, play a critically important role in regulating cotton fiber development. Here, we review recent research that has greatly contributed to our understanding of the roles of different phytohormones in fiber development and regulation. We discuss the mechanisms by which phytohormones regulate the initiation and elongation of fiber cells in cotton, as well as the identification of genes involved in hormone biosynthetic and signaling pathways that regulate the initiation, elongation, and development of cotton fibers.


Assuntos
Fibra de Algodão , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Óvulo Vegetal/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563290

RESUMO

Cotton refers to species in the genus Gossypium that bear spinnable seed coat fibers. A total of 50 species in the genus Gossypium have been described to date. Of these, only four species, viz. Gossypium, hirsutum, G. barbadense, G. arboretum, and G. herbaceum are cultivated; the rest are wild. The black dot-like structures on the surfaces of cotton organs or tissues, such as the leaves, stem, calyx, bracts, and boll surface, are called gossypol glands or pigment glands, which store terpenoid aldehydes, including gossypol. The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that stores gossypol and its derivatives. It provides an ideal system for studying cell differentiation and organogenesis. However, only a few genes involved in the process of gland formation have been identified to date, and the molecular mechanisms underlying gland initiation remain unclear. The terpenoid aldehydes in the lysigenous glands of Gossypium species are important secondary phytoalexins (with gossypol being the most important) and one of the main defenses of plants against pests and diseases. Here, we review recent research on the development of gossypol glands in Gossypium species, the regulation of the terpenoid aldehyde biosynthesis pathway, discoveries from genetic engineering studies, and future research directions.


Assuntos
Gossypium , Gossipol , Aldeídos/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Gossipol/metabolismo , Gossipol/farmacologia , Organogênese , Terpenos/metabolismo
14.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055047

RESUMO

There are numerous exchanges of signals and materials between leaves and roots, including nitrogen, which is one of the essential nutrients for plant growth and development. In this study we identified and characterized the Chlorophyll A/B-Binding Protein (CAB) (named coe2 for CAB overexpression 2) mutant, which is defective in the development of chloroplasts and roots under normal growth conditions. The phenotype of coe2 is caused by a mutation in the Nitric Oxide Associated (NOA1) gene that is implicated in a wide range of chloroplast functions including the regulation of metabolism and signaling of nitric oxide (NO). A transcriptome analysis reveals that expression of genes involved in metabolism and lateral root development are strongly altered in coe2 seedlings compared with WT. COE2 is expressed in hypocotyls, roots, root hairs, and root caps. Both the accumulation of NO and the growth of lateral roots are enhanced in WT but not in coe2 under nitrogen limitation. These new findings suggest that COE2-dependent signaling not only coordinates gene expression but also promotes chloroplast development and function by modulating root development and absorption of nitrogen compounds.


Assuntos
Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Clorofila A/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Fenômenos Fisiológicos Vegetais , Ligação Proteica , Transdução de Sinais
15.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163000

RESUMO

As sessile organisms, plants are constantly challenged by several environmental stresses. Different kinds of stress often occur simultaneously, leading to the accumulation of reactive oxygen species (ROS) produced by respiratory burst oxidase homolog (RBOHD) and calcium fluctuation in cells. Extensive studies have revealed that flagellin sensitive 2 (FLS2) can sense the infection by pathogenic microorganisms and activate cellular immune response by regulating intracellular ROS and calcium signals, which can also be activated during plant response to abiotic stress. However, little is known about the roles of FLS2 and RBOHD in regulating abiotic stress. In this study, we found that although the fls2 mutant showed tolerance, the double mutant rbohd rbohf displayed hypersensitivity to abiotic stress, similar to its performance in response to immune stress. An analysis of the transcriptome of the fls2 mutant and rbohd rbohf double mutant revealed that phytochrome interacting factor 4 (PIF4) acted downstream of FLS2 and RBOHD to respond to the abiotic stress. Further analysis showed that both FLS2 and RBOHD regulated the response of plants to drought and salt stress by regulating the expression of PIF4. These findings revealed an FLS2-RBOHD-PIF4 module in regulating plant response to biotic and abiotic stresses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , NADPH Oxidases/genética , Proteínas Quinases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Análise de Sequência de RNA
16.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269904

RESUMO

As sessile organisms, plants constantly face challenges from the external environment. In order to meet these challenges and survive, plants have evolved a set of sophisticated adaptation strategies, including changes in leaf morphology and epidermal cell development. These developmental patterns are regulated by both light and hormonal signaling pathways. However, our mechanistic understanding of the role of these signaling pathways in regulating plant response to environmental stress is still very limited. By applying single-cell RNA-Seq, we determined the expression pattern of PHYTOCHROME INTERACTING FACTOR (PIF) 1, PIF3, PIF4, and PIF5 genes in leaf epidermal pavement cells (PCs) and guard cells (GCs). PCs and GCs are very sensitive to environmental stress, and our previous research suggests that these PIFs may be involved in regulating the development of PCs, GCs, and leaf morphology under environmental stress. Growth analysis showed that pif1/3/4/5 quadruple mutant maintained tolerance to drought and salt stress, and the length to width ratio of leaves and petiole length under normal growth conditions were similar to those of wild-type (WT) plants under drought and salt treatment. Analysis of the developmental patterns of PCs and GCs, and whole leaf morphology, further confirmed that these PIFs may be involved in mediating the development of epidermal cells under drought and salt stress, likely by regulating the expression of MUTE and TOO MANY MOUTHS (TMM) genes. These results provide new insights into the molecular mechanism of plant adaptation to adverse growth environments.


Assuntos
Proteínas de Arabidopsis , Secas , Proteínas de Arabidopsis/genética , Epiderme/metabolismo , Regulação da Expressão Gênica de Plantas , RNA-Seq , Estresse Salino , Estresse Fisiológico/genética
17.
Mol Hum Reprod ; 27(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515795

RESUMO

Nonobstructive azoospermia (NOA) and diminished ovarian reserve (DOR) are two disorders that can lead to infertility in males and females. Genetic factors have been identified to contribute to NOA and DOR. However, the same genetic factor that can cause both NOA and DOR remains largely unknown. To explore the candidate pathogenic gene that causes both NOA and DOR, we conducted whole-exome sequencing (WES) in a non-consanguineous family with two daughters with DOR and a son with NOA. We detected one pathogenic frameshift variant (NM_007068:c.28delG, p. Glu10Asnfs*31) following a recessive inheritance mode in a meiosis gene DMC1 (DNA meiotic recombinase 1). Clinical analysis showed reduced antral follicle number in both daughters with DOR, but metaphase II oocytes could be retrieved from one of them. For the son with NOA, no spermatozoa were found after microsurgical testicular sperm extraction. A further homozygous Dmc1 knockout mice study demonstrated total failure of follicle development and spermatogenesis. These results revealed a discrepancy of DMC1 action between mice and humans. In humans, DMC1 is required for spermatogenesis but is dispensable for oogenesis, although the loss of function of this gene may lead to DOR. To our knowledge, this is the first report on the homozygous frameshift mutation as causative for both NOA and DOR and demonstrating that DMC1 is dispensable in human oogenesis.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Adulto , Animais , Células Cultivadas , China , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Insuficiência Ovariana Primária/genética
18.
Environ Sci Technol ; 55(9): 5917-5928, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856788

RESUMO

Previous studies often attribute microbial reductive dechlorination to organohalide-respiring bacteria (OHRB) or cometabolic dechlorination bacteria (CORB). Even though methanogenesis frequently occurs during dechlorination of organic chlorinated pollutants (OCPs) in situ, the underestimated effect of methanogens and their interactions with dechlorinators remains unknown. We investigated the association between dechlorination and methanogenesis, as well as the performance of methanogens involved in reductive dechlorination, through the use of meta-analysis, incubation experiment, untargeted metabolomic analysis, and thermodynamic modeling approaches. The meta-analysis indicated that methanogenesis is largely synchronously associated with OCP dechlorination, that OHRB are not the sole degradation engineers that maintain OCP bioremediation, and that methanogens are fundamentally needed to sustain microenvironment functional balance. Laboratory results further confirmed that Methanosarcina barkeri (M. barkeri) promotes the dechlorination of γ-hexachlorocyclohexane (γ-HCH). Untargeted metabolomic analysis revealed that the application of γ-HCH upregulated the metabolic functioning of chlorocyclohexane and chlorobenzene degradation in M. barkeri, further confirming that M. barkeri potentially possesses an auxiliary dechlorination function. Finally, quantum analysis based on density functional theory (DFT) indicated that the methanogenic coenzyme F430 significantly reduces the activation barrier to dechlorination. Collectively, this work suggests that methanogens are highly involved in microbial reductive dechlorination at OCP-contaminated sites and may even directly favor OCP degradation.


Assuntos
Poluentes Ambientais , Euryarchaeota , Bactérias , Biodegradação Ambiental , Hexaclorocicloexano
19.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008619

RESUMO

The chloroplast is a key organelle for photosynthesis and perceiving environmental information. GENOME UNCOUPLED 4 (GUN4) has been shown to be required for the regulation of both chlorophyll synthesis, reactive oxygen species (ROS) homeostasis and plastid retrograde signaling. In this study, we found that growth of the gun4 mutant was significantly improved under medium strong light (200 µmol photons m-2s-1) compared to normal light (100 µmol photons m-2s-1), in marked contrast to wild-type (WT). Further analysis revealed that GUN4 interacts with SIGNAL RECOGNITION PARTICLE 54 KDA SUBUNIT (SRP43) and SRP54. RNA-seq analysis indicated that the expression of genes for light signaling and the circadian clock is altered in gun4 compared with (WT). qPCR analysis confirmed that the expression of the clock genes CLOCK-RELATED 1 (CCA1), LATE ELONGATION HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1) and PSEUDO RESPONSE REGULATOR 7 (PRR7) is significantly changed in the gun4 and srp54 mutants under normal and medium strong light conditions. These results suggest that GUN4 may coordinate the adaptation of plants to changing light conditions by regulating the biological clock, although it is not clear whether the effect is direct or indirect.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Relógios Circadianos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luz , Plântula/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Biológicos , Mutação/genética , Fenótipo , Ligação Proteica/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
20.
J Food Sci Technol ; 58(4): 1524-1537, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33746280

RESUMO

ABSTRACT: As beverage industry by product, kiwi fruit pomace is potential but underutilized. In this study, insoluble dietary fiber from kiwi fruit pomace was modified via ultra-fine pulverization. The physicochemical and functional properties of kiwi fruit insoluble dietary fiber (KWIDF) superfine powder and its application in pork meatballs as a fat substitute were investigated. The SEM and droplet size measurement results revealed that the specific surface area of KWIDF increased from 44.4 to 192.9 m2 kg-1. The swelling capacity, water-, oil- and fat-holding capacities increased by 51.61%, 40.21%, 46.09% and 47.01%, respectively. The poisonous substances adsorbing abilities and the inhibition of enzyme activities were also improved. Similarly, KWIDF adsorbed cholesterol and glucose preferably. In addition, KWIDF revealed significant dose-response effects on the nutritional within a meat matrix, quality and sensory characteristics in meatballs (P < 0.05). The addition of 3% KWIDF superfine powder was found most suitable with high acceptability overall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA