Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(7): e18172, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494837

RESUMO

M1 macrophage polarization and synovitis play an important role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Reduced molecular weight of hyaluronic acid (HA) in synovial fluid of patients with TMJOA. In addition, high molecular weight hyaluronic acid (HMW-HA) is often used clinically to treat TMJ inflammation. As a pattern recognition receptor of the cytoplasm, ALPK1 was found to be pro-inflammatory in a variety of diseases. However, the relationship of ALPK1, HA and M1 macrophage polarization in TMJ synovitis remains unclear. We aimed to investigate the role of ALPK1 and HA in macrophage polarization and TMJ synovitis and the underlying mechanisms. The results demonstrated that ALPK1 was highly upregulated in the synovial macrophages in the inflamed TMJ synovium of patients. Low molecular weight hyaluronic acid (LMW-HA) promoted the expression of ALPK1 and M1 macrophage-associated genes. Besides, rhALPK1 promoted the expression of M1 macrophage-associated factors and the nuclear translocation of PKM2. Furthermore, ALPK1 knockout mice exhibited limited infiltration of macrophages and decreased expression levels of M1 macrophage-associated genes in CFA-induced TMJ synovitis. While HMW-HA inhibited the expression of ALPK1 and M1 macrophage polarization. Our results elucidated that ALPK1 promoted TMJ synovitis by promoting nuclear PKM2-mediated M1 macrophage polarization, whereas HMW-HA inhibited the expression of ALPK1 as well as M1 macrophage polarization.


Assuntos
Osteoartrite , Sinovite , Humanos , Animais , Camundongos , Ácido Hialurônico , Sinovite/patologia , Articulação Temporomandibular/patologia , Inflamação/patologia , Osteoartrite/metabolismo , Macrófagos/metabolismo , Proteínas Quinases
2.
J Virol ; 97(11): e0113723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855619

RESUMO

IMPORTANCE: The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Pandemias , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Infecções Irruptivas , COVID-19/imunologia , COVID-19/virologia
3.
FASEB J ; 34(5): 7058-7074, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275331

RESUMO

The role of central juxtaposed with another zinc finger gene 1 (JAZF1) in glucose regulation remains unclear. Here, we activated mediobasal hypothalamus (MBH) JAZF1 in high-fat diet (HFD)-fed rats by an adenovirus expressing JAZF1 (Ad-JAZF1). We evaluated the changes in the hypothalamic insulin receptor (InsR)-PI3K-Akt-AMPK pathway and hepatic glucose production (HGP). To investigate the impact of MBH Ad-JAZF1 on HGP, we activated MBH JAZF1 in the presence or absence of ATP-dependent potassium (KATP ) channel inhibition, hepatic branch vagotomy (HVG), or an AMPK activator (AICAR). In HFD-fed rats, MBH Ad-JAZF1 decreased body weight and food intake, and inhibited HGP by increasing hepatic insulin signaling. Under insulin stimulation, MBH Ad-JAZF1 increased InsR and Akt phosphorylation, and phosphatidylinositol 3, 4, 5-trisphosphate (PIP3) formation; however, AMPK phosphorylation was decreased in the hypothalamus. The positive effect of MBH JAZF1 on hepatic insulin signaling and HGP was prevented by treatment with a KATP channel inhibitor or HVG. The metabolic impact of hypothalamic JAZF1 was also blocked by MBH AICAR. Ad-JAZF1 treatment in SH-SY5Y cells resulted in an elevation of InsR and Akt phosphorylation following insulin stimulation. Our findings show that hypothalamic JAZF1 regulates HGP via the InsR-PI3K-Akt-AMPK pathway and KATP channels.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/biossíntese , Hipotálamo Médio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Gluconeogênese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Resistência à Insulina , Fígado/inervação , Fígado/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Nervo Vago/metabolismo
4.
Nanotechnology ; 31(36): 365101, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32434167

RESUMO

Chemotherapy-induced immunogenic cell death (ICD) may offer a strategy to improve the effect of the therapeutic treatment of triple-negative breast cancer (TNBC) by eliciting broad antitumor immunity. However, chemotherapy shows a limited therapeutic effect because of multi-drug resistance and the immunosuppressive tumor microenvironment (TME) of TNBC. The unique pharmacological actions of sunitinib (SUN) indicate its possible synergies with paclitaxel (PTX) to enhance chemo-immunotherapy for TNBC. Here, we prepared a co-delivery platform composed of poly(styrene-co-maleic anhydride) (SMA) via a self-assembly process for a combination of PTX and SUN, which was able to induce a higher synergistic ICD. The nanomicellar delivery of PTX and SUN loaded at an optimal ratio of 1:5 (PTX:SUN) presented the characteristics of an appropriate particle size, long-term stability, and time sequence release which synergistically promoted the apoptosis of MDA-MB-231 tumor cells. Moreover, we demonstrated that the combination of PTX and SUN could significantly induce a synergistic effect because it promoted an ICD response, improved tumor immunogenicity, and regulated immunosuppressive factors in the TME. Overall, PTX and SUN with synergistic effects entrapped in a self-assembly nano-delivery system could offer the potential for clinical applicationof a combination chemo-immunotherapy strategy to improve the effect of the therapeutic treatment of TNBC.


Assuntos
Antineoplásicos/administração & dosagem , Paclitaxel/administração & dosagem , Sunitinibe/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Morte Celular Imunogênica , Maleatos/química , Camundongos , Micelas , Paclitaxel/química , Paclitaxel/farmacologia , Tamanho da Partícula , Poliestirenos/química , Sunitinibe/química , Sunitinibe/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Oral Pathol Med ; 45(2): 148-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26082301

RESUMO

BACKGROUND: High-mobility group box protein-1 (HMGB-1), a potent promoter of inflammation, was believed to be a potential trigger of osteoarthritis (OA). Only a few studies have investigated the role of HMGB-1 in temporomandibular joint (TMJ) OA, especially in disc perforation cases. But in this study, not only the expression of HMGB-1 in TMJ OA with disc perforation was investigated but also the possible role of HMGB-1 in TMJ OA was discussed. METHODS: Synovial membrane and disc specimens were collected from patients with TMJ OA, and the expression of HMGB-1 was detected using immunohistochemistry, real-time quantitative PCR and Western blotting. RESULTS: High-mobility group box protein-1 expressed strongly in cytoplasm and nucleus of lining layer cells and endothelial cells in osteoarthritic synovium. Staining of HMGB-1 was found intensive in the frontier tissue of the perforation in the perforated discs. HMGB-1 expression was also upregulated in osteoarthritic synovial cells and disc cells according to real-time quantitative PCR and Western blotting analysis. CONCLUSIONS: High-mobility group box protein-1 expression was upregulated in TMJ OA and might promote the progression of TMJ OA.


Assuntos
Proteína HMGB1/biossíntese , Osteoartrite/metabolismo , Disco da Articulação Temporomandibular/metabolismo , Transtornos da Articulação Temporomandibular/metabolismo , Adulto , Progressão da Doença , Feminino , Proteína HMGB1/genética , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/patologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Disco da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/genética , Transtornos da Articulação Temporomandibular/patologia , Regulação para Cima , Adulto Jovem
6.
J Oral Pathol Med ; 45(7): 539-45, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26671727

RESUMO

BACKGROUND: Temporomandibular joint (TMJ) osteoarthritis(OA)characterized with cartilage degen-eration is associated with inflammation. High mobility group box chromosomal protein-1(HMGB-1)is a potent mediator of inflammation and the trigger of OA. The expression of HMGB-1 in TMJ OA was uncovered, but the role of HMGB-1 in TMJ cartilage degeneration is not fully understood. In this study, the regulation of HMGB-1 in TMJ condylar cartilage was revealed. METHODS: A complete Freund's adjuvant (CFA)-induced TMJ inflammation animal model was employed and the expression of HMGB-1 was detected at 1st, 2nd, and 6th weeks by immunohistochemistry. TMJ condylar chondrocytes were incubated with IL-1ß (10 and 40 ng/ml) at 24, 48, and 72 h, and the translocation and protein level of HMGB-1 were evaluated by immunofluorescence and Western blot. RESULT: Nuclear HMGB-1 staining was predominantly located in chondrocytes of both the fibrosis and proliferative zones in healthy TMJ. 1st week and 2nd week after CFA injection, immunoreaction could be detected in the cytoplasms of HMGB-1-positive cells and cartilage matrix especially in hypertrophic zone. At 6th week after CFA injection, cartilage matrix expression was disappeared and the cytoplasm expression of HMGB-1 was very weak in hypertrophic zone. HMGB-1 was translocated from the nucleus to the cytoplasm at 48 h after incubated with IL-1ß (10 ng/ml and 40 ng/ml). The protein level of HMGB-1 was increased after stimulation and had a peak at 48 h. CONCLUSION: HMGB-1 might be associated with TMJ inflammation and OA. Insight into the role of HMGB-1 in TMJ inflammation is helpful to add the new knowledge into the pathogenesis of TMJ OA.


Assuntos
Condrócitos/microbiologia , Proteína HMGB1/biossíntese , Interleucina-1beta/farmacologia , Osteoartrite/metabolismo , Transtornos da Articulação Temporomandibular/patologia , Animais , Western Blotting/métodos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/patologia , Citoplasma/metabolismo , Citoplasma/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Côndilo Mandibular/efeitos dos fármacos , Côndilo Mandibular/metabolismo , Côndilo Mandibular/patologia , Osteoartrite/patologia , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia
7.
Anal Chem ; 87(1): 338-42, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25493921

RESUMO

Anticancer activity and toxicity of doxorubicin (Dox) are associated with its DNA intercalation. To understand the role in gene regulation and the drug mechanism, it is a challenge to detect the DNA-Dox interaction at the single-molecule level without the use of laborious, time-consuming labeling assays and an error-prone amplification method. Here, we utilized the simplest and cheapest, yet highly sensitive, single-molecule nanopore technology to investigate the DNA-Dox interaction and explore in situ the intercalative reaction kinetics. Distinctive electronic signal patterns between DNA and the DNA-Dox complex allow protein nanopore to readily detect the changes in structure and function of DNA. After Dox insertion, nanopore unzipping time of DNA was elevated 10-fold while the blocking current decreased, demonstrating the higher affinity of the DNA-Dox complex (formation constant K(f) = 3.09 × 10(5) M(-1)). Continuous rapid nanopore detection in real time displayed that Dox intercalation in DNA is a two-state dynamic process: fast binding and slow conformational adaption. The nanopore platform provides a powerful tool for studying small molecule-biomacromolecule interactions and paves the way for novel applications aimed at drug screening and functional analysis.


Assuntos
Técnicas Biossensoriais/métodos , Adutos de DNA/química , Adutos de DNA/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Nanoporos , Nanotecnologia/métodos , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Humanos , Substâncias Intercalantes/química , Cinética , Conformação de Ácido Nucleico
8.
J Oral Pathol Med ; 44(8): 622-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25366928

RESUMO

BACKGROUND: Hyaluronic acid (HA) injection is widely used in the treatment of temporomandibular joint (TMJ) osteoarthritis (OA). Proteoglycan 4 (PRG4) is another joint lubricant that protects surface of articular cartilage. But few studies had explored the role of HA in regulation of PRG4 expression in TMJ OA. In this study, the effects of HA on the expression of PRG4 in osteoarthritic TMJ synovial cells were investigated in hypoxia, which was similar to the TMJ physiologically. METHODS: Synovial cells were isolated from the TMJ OA patients and were treated with or without HA under normoxia or hypoxia for indicated time periods. The proliferation of synovial cells was measured using Cell Counting Kit-8 (CCK-8). The gene expression of HAS2, VEGF, and PRG4 was detected by quantitative real-time PCR, and the secretion of PRG4 and VEGF was assayed by enzyme-linked immunosorbent assay (ELISA). Immunofluorescence was used to examine the protein expression of hypoxia-induced factor-1α (HIF-1α). RESULTS: Hyaluronic acid markedly increased the proliferation of osteoarthritic synovial cells in hypoxia. The expression of HAS2 and PRG4 mRNA of osteoarthritic synovial cells under hypoxia was enhanced by HA treatment. However, HA had no effect on reducing the VEGF and HIF-1α expression in synovial cells in hypoxia. CONCLUSIONS: Hyaluronic acid could promote the expression of HAS2 and PRG4, but could not modulate HIF-1α and VEGF expression of TMJ osteoarthritic synovial cells in hypoxia.


Assuntos
Células do Tecido Conjuntivo/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Osteoartrite/tratamento farmacológico , Proteoglicanas/genética , Membrana Sinovial/efeitos dos fármacos , Adulto , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Células do Tecido Conjuntivo/metabolismo , Células do Tecido Conjuntivo/patologia , Ensaio de Imunoadsorção Enzimática , Glucuronosiltransferase/biossíntese , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Hialuronan Sintases , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteoglicanas/biossíntese , Proteoglicanas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Articulação Temporomandibular/metabolismo , Articulação Temporomandibular/patologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
9.
Chemosphere ; 353: 141549, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408570

RESUMO

Biogenic volatile organic compounds (BVOC) assume a pivotal role during the formation stages of ozone (O3) and secondary organic aerosols (SOA), serving as their primary precursors. We used the latest MEGAN3.1 model, updated vegetation data and emission factors, combined with MODIS data analysis to simulate and estimate the integrated emissions of BVOC from nine provinces in China's Yellow River Basin in 2018. Following an extensive evaluation of the WRF-CMAQ model utilizing diverse parameters, the simulated and observed values had correlation coefficients between them that ranged from 0.94 to 0.99, implying a favorable outcome in terms of simulation efficacy. The findings from the simulation analysis reveal that the combined BVOC emissions from the nine provinces in the Yellow River Basin reached a total of 6.51 Tg in 2018. Among these provinces, Sichuan, Henan, and Shaanxi ranked highest, with emissions of 1.28 Tg, 1.04 Tg, and 0.96 Tg, respectively. BVOC emissions led to concentrations of 36.72 µg/m³ in the daily maximum 8-h ozone and 0.59 µg/m³ in the average SOA in nine provinces of the Yellow River Basin in July. Isoprene contributed the most to the O3 production with 6.31 µg/m3, and monoterpenes contributed the most to SOA production with 0.45 µg/m3. ΔSOA and ΔOzone are mainly distributed in the belts of central Sichuan Province, southern Shaanxi Province, western Henan Province, northern Qinghai Province, central Inner Mongolia, and southern Shanxi Province, and most of these areas are located 50 km around the Yellow River. O3 and SOA in Taiyuan, Xi'an, Chengdu, and Zhengzhou cities are strongly influenced by the generation of BVOCs. This study provides a reliable scientific basis for the prevention and control of air pollution in the Yellow River Basin.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Rios , China , Aerossóis/análise , Monitoramento Ambiental
10.
Bone ; 181: 117036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311303

RESUMO

Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.


Assuntos
Aldeído Oxirredutases , Reabsorção Óssea , Osteólise , Animais , Camundongos , Osteogênese/genética , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , NF-kappa B/metabolismo , Diferenciação Celular , Osteólise/metabolismo , Ligante RANK/metabolismo
11.
PLoS One ; 19(4): e0301420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593140

RESUMO

The COVID-19 pandemic has been present globally for more than three years, and cross-border transmission has played an important role in its spread. Currently, most predictions of COVID-19 spread are limited to a country (or a region), and models for cross-border transmission risk assessment remain lacking. Information on imported COVID-19 cases reported from March 2020 to June 2022 was collected from the National Health Commission of China, and COVID-19 epidemic data of the countries of origin of the imported cases were collected on data websites such as WHO and Our World in Data. It is proposed to establish a prediction model suitable for the prevention and control of overseas importation of COVID-19. Firstly, the SIR model was used to fit the epidemic infection status of the countries where the cases were exported, and most of the r2 values of the fitted curves obtained were above 0.75, which indicated that the SIR model could well fit different countries and the infection status of the region. After fitting the epidemic infection status data of overseas exporting countries, on this basis, a SIR-multiple linear regression overseas import risk prediction combination model was established, which can predict the risk of overseas case importation, and the established overseas import risk model overall P <0.05, the adjusted R2 = 0.7, indicating that the SIR-multivariate linear regression overseas import risk prediction combination model can obtain better prediction results. Our model effectively estimates the risk of imported cases of COVID-19 from abroad.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , China/epidemiologia , Modelos Lineares
12.
Eur J Protistol ; 94: 126089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749182

RESUMO

Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.


Assuntos
Repetição de Anquirina , Eimeria tenella , Proteínas de Protozoários , Triazinas , Eimeria tenella/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Triazinas/farmacologia , Galinhas/parasitologia , Coccidiostáticos/farmacologia , Nitrilas/farmacologia , Resistência a Medicamentos/genética , Coccidiose/parasitologia , Coccidiose/veterinária , Doenças das Aves Domésticas/parasitologia , Benzamidas/farmacologia , Lactonas
13.
J Ethnopharmacol ; 321: 117487, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030024

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a life-threatening condition with high morbidity and mortality, underscoring the urgent need for novel treatments. Monochasma savatieri Franch. (LRC) is commonly used clinically to treat wind-heat cold, bronchitis, acute pneumonia and acute gastroenteritis. However, its role in the treatment of ALI and its mechanism of action are still unclear. AIM OF THE STUDY: This study aimed to demonstrate the pharmacological effects and underlying mechanisms of LRC extract, and provide important therapeutic strategies and theoretical basis for ALI. MATERIALS AND METHODS: In this study, a research paradigm of integrated pharmacology combining histopathological analysis, network pharmacology, metabolomics, and biochemical assays was used to elucidate the mechanisms underlaying the effects of LRC extract on LPS-induced ALI in BALB/c mice. RESULTS: The research findings demonstrated that LRC extract significantly alleviated pathological damage in lung tissues and inhibited apoptosis in alveolar epithelial cells, and the main active components were luteolin, isoacteoside, and aucubin. Lung tissue metabolomic and immunohistochemical methods confirmed that LRC extract could restore metabolic disorders in ALI mice by correcting energy metabolism imbalance, activating cholinergic anti-inflammatory pathway (CAP), and inhibiting TLR4/NF-κB signaling pathway. CONCLUSIONS: This study showed that LRC extract inhibited the occurrence and development of ALI inflammation by promoting the synthesis of antioxidant metabolites, balancing energy metabolism, activating CAP and suppressing the α7nAChR-TLR4/NF-κB p65 signaling pathway. In addition, our study provided an innovative research model for exploring the effective ingredients and mechanisms of traditional Chinese medicine. To the best of our knowledge, this is the first report describing the protective effects of LRC extract in LPS-induced ALI mice.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Animais , Camundongos , NF-kappa B/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Pulmão/patologia , Pneumonia/patologia
14.
J Ethnopharmacol ; 332: 118358, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38763370

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW: This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS: This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS: This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION: Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa/métodos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
15.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587080

RESUMO

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Assuntos
Anticorpos Neutralizantes , Sprays Nasais , Animais , Cricetinae , Humanos , China , Traqueia , Voluntários Saudáveis
16.
Int Immunopharmacol ; 114: 109486, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508923

RESUMO

BACKGROUND: The temporomandibular joint osteoarthritis (TMJ-OA) is characterized by progressive cartilage degradation, subchondral bone erosion, and chronic pain, leading to articular damage and chewing dysfunction. Studies have shown that interleukin-1ß (IL-1ß) plays a critical role in the development of TMJ-OA. Transglutaminase 2 (TG2) has been identified as a marker of chondrocyte hypertrophy and IL-1ß was able to increase TG2 expression in chondrocytes. Therefore, the aim of this study was to explore the ability of TG2 inhibitors to suppress TMJ-OA progression. METHODS: Firstly, toluidine blue staining, cell counting kit-8 assay, immunocytofluorescent staining and western blot were used to investigate the anti-inflammatory effects of TG2 inhibitors in IL-1ß-stimulated murine chondrocytes and the underlying mechanisms. Afterwards, micro-CT analysis, histological staining, immunohistochemical and immunohistofluorescent staining were used to evaluate the therapeutic efficacy of TG2 inhibitors in monosodium iodoacetate (MIA)-induced TMJ-OA in rats. RESULTS: TG2 inhibitors suppressed the IL-1ß-induced upregulation of COX-2, iNOS, MMP-13, and MMP-3 and reversed the IL-1ß-induced proteoglycan loss in chondrocytes through inhibiting NF-κB activation. Consistently, the MIA-induced upregulation of MMP-13 and MMP-3, and loss of structural integrity of the articular cartilage and subchondral bone were markedly reversed by TG2 inhibitors via inhibiting NF-κB activation. CONCLUSIONS: TG2 inhibitors demonstrated a potent therapeutic efficacy on cartilage and subchondral bone structures of TMJ-OA by reducing inflammation and cartilage degradation through suppressing NF-κB activation.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Osteoartrite/metabolismo , Articulação Temporomandibular/patologia , Ácido Iodoacético , Condrócitos , Interleucina-1beta/metabolismo , Cartilagem Articular/patologia , Células Cultivadas
17.
Arthritis Res Ther ; 25(1): 230, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031141

RESUMO

OBJECTIVES: Innate immunity plays a significant role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA), which is characterized by synovial inflammation and condylar cartilage degradation. We are urged to investigate the impact of Resatorvid, a preventative drug that inhibits Toll-like receptor 4 (TLR4), on experimental inflammatory TMJOA pathology. METHODS: An intra-articular injection of complete Freund's adjuvant (CFA) was used to induce an experimental inflammatory mouse TMJOA model, and TLR4 expression was identified by immunofluorescent labeling. Intraperitoneal injections of Resatorvid were administered to CFA-induced TMJOA mice, and the pathology of TMJOA animals with and without Resatorvid treatment was examined by H&E, Safranin-O/Fast Green, and TRAP staining, as well as micro-CT, immunohistochemistry, and immunofluorescence. The impact of Resatorvid on chondrocyte pyroptosis and macrophage inflammation was further investigated using ATDC5 chondrocytes and RAW264.7 macrophages pretreated with relevant antagonists. RESULTS: CFA-induced TMJOA mice revealed remarkable synovial inflammation, together with a time course of cartilage degradation and bone destruction, with TLR4 elevated in the synovium and condylar cartilage. Prophylactic treatment with Resatorvid mitigated synovial inflammation, cartilage degeneration, and bone destruction in CFA-induced TMJOA mice and downregulated MyD88/NF-κB expression. Ex vivo studies demonstrated that Resatorvid treatment alleviated NOD-like receptor protein 3 (NLRP3)-mediated chondrocyte pyroptosis and degeneration and relieved macrophage inflammation by preventing reactive oxygen species (ROS) production through NLRP3 signaling. CONCLUSION: Prophylactic treatment with Resatorvid alleviates TMJOA pathology by inhibiting chondrocyte pyroptosis and degeneration, as well as ROS-induced macrophage inflammation, through TLR4/MyD88/NF-κB/NLRP3.


Assuntos
Condrócitos , Osteoartrite , Camundongos , Animais , Condrócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Inflamação/patologia , Osteoartrite/metabolismo , Articulação Temporomandibular/metabolismo , Modelos Animais de Doenças
18.
Hum Vaccin Immunother ; 19(2): 2246483, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37674298

RESUMO

With the development of the SARS-CoV-2 pandemic, there have been doubts about the necessity of vaccine boosters for healthy adults. However, due to the lack of relevant evidence, current research is unable to provide reliable medical advice for COVID-19 boost in healthy adults. We conducted a retrospective observational study to evaluate the effectiveness of different COVID-19 vaccination regimens by investigating the SARS-CoV-2 infection status of healthy donors in Southeast China. From December 2022 to February 2023, 737 healthy adult blood donors were analyzed. Results showed that any COVID-19 vaccine boosts reduced the risk of Omicron BA.5.2/BF.7 infection compared to only receiving prime vaccination (rVE = 16%, 95%CI = 4, 27%). The second boost further enhanced vaccine effectiveness compared to the received first booster (rVE = 39%, 95%CI = 16, 55%). Through retrospective observation of healthy adults during the BA.5.2/BF.7 surge in China, we found that boost vaccinations significantly reduce the risk of SARS-CoV-2 infection and disease. Findings show healthy adults benefit from boost vaccinations, even if not at high-risk for severe COVID-19.


Assuntos
COVID-19 , Humanos , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Retrospectivos , SARS-CoV-2 , Vacinação , China/epidemiologia
19.
Anal Chem ; 84(3): 1253-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22243128

RESUMO

We developed a novel strategy for rapid colorimetric analysis of a specific DNA sequence by combining gold nanoparticles (AuNPs) with an asymmetric polymerase chain reaction (As-PCR). In the presence of the correct DNA template, the bound oligonucleotides on the surface of AuNPs selectively hybridized to form complementary sequences of single-stranded DNA (ssDNA) target generated from As-PCR. DNA hybridization resulted in self-assembly and aggregation of AuNPs, and a concomitant color change from ruby red to blue-purple occurred. This approach is simpler than previous methods, as it requires a simple mixture of the asymmetric PCR product with gold colloid conjugates. Thus, it is a convenient colorimetric method for specific nucleic acid sequence analysis with high specificity and sensitivity. Most importantly, the marked color change occurs at a picogram detection level after standing for several minutes at room temperature. Linear amplification minimizes the potential risk of PCR product cross-contamination. The efficiency to detect Bacillus anthracis in clinical samples clearly indicates the practical applicability of this approach.


Assuntos
Colorimetria , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase , Análise de Sequência de DNA/métodos , Bacillus anthracis/genética , Sequência de Bases , DNA/metabolismo , Oligonucleotídeos/química
20.
J Virol Methods ; 307: 114564, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35671888

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 infections has led to excess deaths worldwide. Neutralizing antibodies (nAbs) against viral spike protein acquired from natural infections or vaccinations contribute to protection against new- and re-infections. Besides neutralization, antibody-mediated cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are also important for viral clearance. However, due to the lack of convenient methods, the ADCC and ADCP responses elicited by viral infections or vaccinations remain to be explored. Here, we developed cell-based assays using target cells stably expressing SARS-CoV-2 spikes and Jurkat-NFAT-CD16a/CD32a effector cells for ADCC/ADCP measurements of monoclonal antibodies and human convalescent COVID-19 plasmas (HCPs). In control samples (n = 190), the specificity was 99.5% (95%CI: 98.4-100%) and 97.4% (95%CI: 95.1-99.6%) for the ADCC and ADCP assays, respectively. Among 87 COVID-19 HCPs, 83 (sensitivity: 95.4%, 95%CI: 91.0-99.8%) and 81 (sensitivity: 93.1%, 95%CI: 87.8-98.4%) showed detectable ADCC (titer range: 7.4-1721.6) and ADCP activities (titer range: 4-523.2). Notably, both ADCC and ADCP antibody titers positively correlated with the nAb titers in HCPs. In summary, we developed new tools for quantitative ADCC and ADCP analysis against SARS-CoV-2, which may facilitate further evaluations of Fc-mediated effector functions in preventing and treating against SARS-CoV-2.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Humanos , Imunoensaio/métodos , Pandemias , Fagocitose , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA