Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 1880-1892, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38478589

RESUMO

Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The noncanonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). The electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops.


Assuntos
Arabidopsis , Proteína 9 Associada à CRISPR , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Cucumis sativus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Cromatina/metabolismo , Cromatina/genética
2.
Angew Chem Int Ed Engl ; 60(45): 24022-24027, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34498366

RESUMO

We developed a tandem electrocatalyst for CO2 -to-CO conversion comprising the single Cu site co-coordinated with N and S anchored carbon matrix (Cu-S1 N3 ) and atomically dispersed Cu clusters (Cux ), denoted as Cu-S1 N3 /Cux . The as-prepared Cu-S1 N3 /Cux composite presents a 100 % Faradaic efficiency towards CO generation (FECO ) at -0.65 V vs. RHE and high FECO over 90 % from -0.55 to -0.75 V, outperforming the analogues with Cu-N4 (FECO only 54 % at -0.7 V) and Cu-S1 N3 (FECO 70 % at -0.7 V) configurations. The unsymmetrical Cu-S1 N3 atomic interface in the carbon basal plane possesses an optimized binding energy for the key intermediate *COOH compared with Cu-N4 site. At the same time, the adjacent Cux effectively promotes the protonation of *CO2 - by accelerating water dissociation and offering *H to the Cu-S1 N3 active sites. This work provides a tandem strategy for facilitating proton-coupled electron transfer over the atomic-level catalytic sites.

3.
Animals (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552370

RESUMO

Due to the booming development of computer vision technology and artificial intelligence algorithms, it has become more feasible to implement artificial rearing of animals in real production scenarios. Improving the accuracy of day-age detection of chickens is one of the examples and is of great importance for chicken rearing. This paper focuses on the problem of classifying the age of chickens within 100 days. Due to the huge amount of data and the different computing power of different devices in practical application scenarios, it is important to maximize the computing power of edge computing devices without sacrificing accuracy. This paper proposes a high-precision federated learning-based model that can be applied to edge computing scenarios. In order to accommodate different computing power in different scenarios, this paper proposes a dual-ended adaptive federated learning framework; in order to adapt to low computing power scenarios, this paper performs lightweighting operations on the mainstream model; and in order to verify the effectiveness of the model, this paper conducts a number of targeted experiments. Compared with AlexNet, VGG, ResNet and GoogLeNet, this model improves the classification accuracy to 96.1%, which is 14.4% better than the baseline model and improves the Recall and Precision by 14.8% and 14.2%, respectively. In addition, by lightening the network, our methods reduce the inference latency and transmission latency by 24.4 ms and 10.5 ms, respectively. Finally, this model is deployed in a real-world application and an application is developed based on the wechat SDK.

4.
Adv Sci (Weinh) ; 8(23): e2102884, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34693659

RESUMO

Carbon-based single-atom catalysts (SACs) with well-defined and homogeneously dispersed metal-N4 moieties provide a great opportunity for CO2 reduction. However, controlling the binding strength of various reactive intermediates on catalyst surface is necessary to enhance the selectivity to a desired product, and it is still a challenge. In this work, the authors prepared Sn SACs consisting of atomically dispersed SnN3 O1 active sites supported on N-rich carbon matrix (Sn-NOC) for efficient electrochemical CO2 reduction. Contrary to the classic Sn-N4 configuration which gives HCOOH and H2 as the predominant products, Sn-NOC with asymmetric atomic interface of SnN3 O1 gives CO as the exclusive product. Experimental results and density functional theory calculations show that the atomic arrangement of SnN3 O1 reduces the activation energy for *COO and *COOH formation, while increasing energy barrier for HCOO* formation significantly, thereby facilitating CO2 -to-CO conversion and suppressing HCOOH production. This work provides a new way for enhancing the selectivity to a specific product by controlling individually the binding strength of each reactive intermediate on catalyst surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA