Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 154(1): 103-17, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23827677

RESUMO

Many neurodegenerative diseases are characterized by the accumulation of insoluble protein aggregates, including neurofibrillary tangles comprised of tau in Alzheimer's disease and Lewy bodies composed of α-synuclein in Parkinson's disease. Moreover, different pathological proteins frequently codeposit in disease brains. To test whether aggregated α-synuclein can directly cross-seed tau fibrillization, we administered preformed α-synuclein fibrils assembled from recombinant protein to primary neurons and transgenic mice. Remarkably, we discovered two distinct strains of synthetic α-synuclein fibrils that demonstrated striking differences in the efficiency of cross-seeding tau aggregation, both in neuron cultures and in vivo. Proteinase K digestion revealed conformational differences between the two synthetic α-synuclein strains and also between sarkosyl-insoluble α-synuclein extracted from two subgroups of Parkinson's disease brains. We speculate that distinct strains of pathological α-synuclein likely exist in neurodegenerative disease brains and may underlie the tremendous heterogeneity of synucleinopathies.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/química
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751752

RESUMO

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Assuntos
Biomarcadores/metabolismo , Glicosaminoglicanos/isolamento & purificação , Iduronato Sulfatase/genética , Mucopolissacaridose II/diagnóstico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida , Dermatan Sulfato/farmacologia , Dissacarídeos/química , Modelos Animais de Doenças , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Iduronato Sulfatase/metabolismo , Camundongos , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Espectrometria de Massas em Tandem
3.
J Neurosci ; 37(47): 11406-11423, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29054878

RESUMO

Pathological tau aggregates occur in Alzheimer's disease (AD) and other neurodegenerative tauopathies. It is not clearly understood why tauopathies vary greatly in the neuroanatomical and histopathological patterns of tau aggregation, which contribute to clinical heterogeneity in these disorders. Recent studies have shown that tau aggregates may form distinct structural conformations, known as tau strains. Here, we developed a novel model to test the hypothesis that cell-to-cell transmission of different tau strains occurs in nontransgenic (non-Tg) mice, and to investigate whether there are strain-specific differences in the pattern of tau transmission. By injecting pathological tau extracted from postmortem brains of AD (AD-tau), progressive supranuclear palsy (PSP-tau), and corticobasal degeneration (CBD-tau) patients into different brain regions of female non-Tg mice, we demonstrated the induction and propagation of endogenous mouse tau aggregates. Specifically, we identified differences in tau strain potency between AD-tau, CBD-tau, and PSP-tau in non-Tg mice. Moreover, differences in cell-type specificity of tau aggregate transmission were observed between tau strains such that only PSP-tau and CBD-tau strains induce astroglial and oligodendroglial tau inclusions, recapitulating the diversity of neuropathology in human tauopathies. Furthermore, we demonstrated that the neuronal connectome, but not the tau strain, determines which brain regions develop tau pathology. Finally, CBD-tau- and PSP-tau-injected mice showed spatiotemporal transmission of glial tau pathology, suggesting glial tau transmission contributes to the progression of tauopathies. Together, our data suggest that different tau strains determine seeding potency and cell-type specificity of tau aggregation that underlie the diversity of human tauopathies.SIGNIFICANCE STATEMENT Tauopathies show great clinical and neuropathological heterogeneity, despite the fact that tau aggregates in each disease. This heterogeneity could be due to tau aggregates forming distinct structural conformations, or strains. We now report the development of a sporadic tauopathy model to study human tau strains by intracerebrally injecting nontransgenic mice with pathological tau enriched from human tauopathy brains. We show human tau strains seed different types and cellular distributions of tau neuropathology in our model that recapitulate the heterogeneity seen in these human diseases.


Assuntos
Encéfalo/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Adulto , Idoso , Animais , Encéfalo/citologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/metabolismo , Oligodendroglia/metabolismo , Tauopatias/classificação
4.
J Biol Chem ; 291(25): 13175-93, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129267

RESUMO

Filamentous tau aggregates, the hallmark lesions of Alzheimer disease (AD), play key roles in neurodegeneration. Activation of protein degradation systems has been proposed to be a potential strategy for removing pathological tau, but it remains unclear how effectively tau aggregates can be degraded by these systems. By applying our previously established cellular model system of AD-like tau aggregate induction using preformed tau fibrils, we demonstrate that tau aggregates induced in cells with regulated expression of full-length mutant tau can be gradually cleared when soluble tau expression is suppressed. This clearance is at least partially mediated by the autophagy-lysosome pathway, although both the ubiquitin-proteasome system and the autophagy-lysosome pathway are deficient in handling large tau aggregates. Importantly, residual tau aggregates left after the clearance phase leads to a rapid reinstatement of robust tau pathology once soluble tau expression is turned on again. Moreover, we succeeded in generating monoclonal cells persistently carrying tau aggregates without obvious cytotoxicity. Live imaging of GFP-tagged tau aggregates showed that tau inclusions are dynamic structures constantly undergoing "fission" and "fusion," which facilitate stable propagation of tau pathology in dividing cells. These findings provide a greater understanding of cell-to-cell transmission of tau aggregates in dividing cells and possibly neurons.


Assuntos
Proteínas tau/metabolismo , Autofagia , Linhagem Celular , Humanos , Cinética , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise , Solubilidade , Tauopatias/tratamento farmacológico , Ubiquitinação
5.
Acta Neuropathol ; 130(3): 349-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150341

RESUMO

Filamentous tau inclusions are hallmarks of Alzheimer's disease (AD) and other neurodegenerative tauopathies. An increasing number of studies implicate the cell-to-cell propagation of tau pathology in the progression of tauopathies. We recently showed (Iba et al., J Neurosci 33:1024-1037, 2013) that inoculation of preformed synthetic tau fibrils (tau PFFs) into the hippocampus of young transgenic (Tg) mice (PS19) overexpressing human P301S mutant tau induced robust tau pathology in anatomically connected brain regions including the locus coeruleus (LC). Since Braak and colleagues hypothesized that the LC is the first brain structure to develop tau lesions and since LC has widespread connections throughout the CNS, LC neurons could be the critical initiators of the stereotypical spreading of tau pathology through connectome-dependent transmission of pathological tau in AD. Here, we report that injections of tau PFFs into the LC of PS19 mice induced propagation of tau pathology to major afferents and efferents of the LC. Notably, tau pathology propagated along LC efferent projections was localized not only to axon terminals but also to neuronal perikarya, suggesting transneuronal transfer of templated tau pathology to neurons receiving LC projections. Further, brainstem neurons giving rise to major LC afferents also developed perikaryal tau pathology. Surprisingly, while tangle-bearing neurons degenerated in the LC ipsilateral to the injection site starting 6 months post-injection, no neuron loss was seen in the contralateral LC wherein tangle-bearing neurons gradually cleared tau pathology by 6-12 months post-injection. However, the spreading pattern of tau pathology observed in our LC-injected mice is different from that in AD brains since hippocampus and entorhinal cortex, which are affected in early stages of AD, were largely spared of tau inclusions in our model. Thus, while our study tested critical aspects of the Braak hypothesis of tau pathology spread, this novel mouse model provides unique opportunities to elucidate mechanisms underlying the selective vulnerability of neurons to acquire tau pathology and succumb to or resist tau-mediated neurodegeneration.


Assuntos
Locus Cerúleo/patologia , Neurônios/patologia , Tauopatias/patologia , Vias Aferentes/metabolismo , Vias Aferentes/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Vias Eferentes/metabolismo , Vias Eferentes/patologia , Escherichia coli , Feminino , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Imuno-Histoquímica , Locus Cerúleo/metabolismo , Masculino , Camundongos Transgênicos , Mutação , Tauopatias/metabolismo , Tálamo/metabolismo , Tálamo/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
6.
J Neurosci ; 33(3): 1024-37, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23325240

RESUMO

Tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau pathologies, are neurodegenerative diseases characterized by neurofibrillary tangles (NFTs) comprising filamentous tau protein. Although emerging evidence suggests that tau pathology may be transmitted, we demonstrate here that synthetic tau fibrils are sufficient to transmit tau inclusions in a mouse model. Specifically, intracerebral inoculation of young PS19 mice overexpressing mutant human tau (P301S) with synthetic preformed fibrils (pffs) assembled from recombinant full-length tau or truncated tau containing four microtubule binding repeats resulted in rapid induction of NFT-like inclusions that propagated from injected sites to connected brain regions in a time-dependent manner. Interestingly, injection of tau pffs into either hippocampus or striatum together with overlaying cortex gave rise to distinct pattern of spreading. Moreover, unlike tau pathology that spontaneously develops in old PS19 mice, the pff-induced tau inclusions more closely resembled AD NFTs because they were Thioflavin S positive, acetylated, and more resistant to proteinase K digestion. Together, our study demonstrates that synthetic tau pffs alone are capable of inducing authentic NFT-like tau aggregates and initiating spreading of tau pathology in a tauopathy mouse model.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Fosforilação , Tauopatias/patologia
7.
Neuron ; 112(3): 384-403.e8, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995685

RESUMO

Apolipoprotein E (APOE) is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). APOE4 increases and APOE2 decreases risk relative to APOE3. In the P301S mouse model of tauopathy, ApoE4 increases tau pathology and neurodegeneration when compared with ApoE3 or the absence of ApoE. However, the role of ApoE isoforms and lipid metabolism in contributing to tau-mediated degeneration is unknown. We demonstrate that in P301S tau mice, ApoE4 strongly promotes glial lipid accumulation and perturbations in cholesterol metabolism and lysosomal function. Increasing lipid efflux in glia via an LXR agonist or Abca1 overexpression strongly attenuates tau pathology and neurodegeneration in P301S/ApoE4 mice. We also demonstrate reductions in reactive astrocytes and microglia, as well as changes in cholesterol biosynthesis and metabolism in glia of tauopathy mice in response to LXR activation. These data suggest that promoting efflux of glial lipids may serve as a therapeutic approach to ameliorate tau and ApoE4-linked neurodegeneration.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/genética , Colesterol , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos
8.
J Biol Chem ; 286(17): 15317-31, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21372138

RESUMO

Neurofibrillary tangles (NFTs) in Alzheimer disease and related tauopathies are composed of insoluble hyperphosphorylated Tau protein, but the mechanisms underlying the conversion of highly soluble Tau into insoluble NFTs remain elusive. Here, we demonstrate that introduction of minute quantities of misfolded preformed Tau fibrils (Tau pffs) into Tau-expressing cells rapidly recruit large amounts of soluble Tau into filamentous inclusions resembling NFTs with unprecedented efficiency, suggesting a "seeding"-recruitment process as a highly plausible mechanism underlying NFT formation in vivo. Consistent with the emerging concept of prion-like transmissibility of disease-causing amyloidogenic proteins, we found that spontaneous uptake of Tau pffs into cells is likely mediated by endocytosis, suggesting a potential mechanism for the propagation of Tau lesions in tauopathy brains. Furthermore, sequestration of soluble Tau by pff-induced Tau aggregates attenuates microtubule overstabilization in Tau-expressing cells, supporting the hypothesis of a Tau loss-of-function toxicity in cells harboring NFTs. In summary, our study establishes a cellular system that robustly develops authentic NFT-like Tau aggregates, which provides mechanistic insights into NFT pathogenesis and a potential tool for identifying Tau-based therapeutics.


Assuntos
Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/farmacologia , Proteínas Amiloidogênicas , Linhagem Celular , Humanos , Solubilidade , Tauopatias/etiologia
9.
Nat Commun ; 11(1): 7, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911587

RESUMO

The deposition of pathological tau is a common feature in several neurodegenerative tauopathies. Although equal ratios of tau isoforms with 3 (3R) and 4 (4R) microtubule-binding repeats are expressed in the adult human brain, the pathological tau from different tauopathies have distinct isoform compositions and cell type specificities. The underlying mechanisms of tauopathies are unknown, partially due to the lack of proper models. Here, we generate a new transgenic mouse line expressing equal ratios of 3R and 4R human tau isoforms (6hTau mice). Intracerebral injections of distinct human tauopathy brain-derived tau strains into 6hTau mice recapitulate the deposition of pathological tau with distinct tau isoform compositions and cell type specificities as in human tauopathies. Moreover, through in vivo propagation of these tau strains among different mouse lines, we demonstrate that the transmission of distinct tau strains is independent of strain isoform compositions, but instead intrinsic to unique pathological conformations.


Assuntos
Isoformas de Proteínas/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética , Tauopatias/genética , Proteínas tau/genética
11.
Nat Med ; 24(1): 29-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29200205

RESUMO

Alzheimer's disease (AD) is characterized by extracellular amyloid-ß (Aß) plaques and intracellular tau inclusions. However, the exact mechanistic link between these two AD lesions remains enigmatic. Through injection of human AD-brain-derived pathological tau (AD-tau) into Aß plaque-bearing mouse models that do not overexpress tau, we recapitulated the formation of three major types of AD-relevant tau pathologies: tau aggregates in dystrophic neurites surrounding Aß plaques (NP tau), AD-like neurofibrillary tangles (NFTs) and neuropil threads (NTs). These distinct tau pathologies have different temporal onsets and functional consequences on neural activity and behavior. Notably, we found that Aß plaques created a unique environment that facilitated the rapid amplification of proteopathic AD-tau seeds into large tau aggregates, initially appearing as NP tau, which was followed by the formation and spread of NFTs and NTs, likely through secondary seeding events. Our study provides insights into a new multistep mechanism underlying Aß plaque-associated tau pathogenesis.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Neuritos/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Axônios/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Emaranhados Neurofibrilares
12.
J Clin Invest ; 128(5): 2144-2155, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29600961

RESUMO

The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid ß (Aß) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti-human apoE antibodies can decrease Aß pathology in mice producing both human Aß and apoE4, and investigated the mechanism underlying these effects. We utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4). We discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognizes human apoE4 and apoE3 and preferentially binds nonlipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also binds to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice. When delivered centrally or by peripheral injection, HAE-4 reduced Aß deposition in APPPS1-21/APOE4 mice. Using adeno-associated virus to express 2 different full-length anti-apoE antibodies in the brain, we found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcγ receptor function. These data support the hypothesis that a primary mechanism for apoE-mediated plaque formation may be a result of apoE aggregation, as preferentially targeting apoE aggregates with therapeutic antibodies reduces Aß pathology and may represent a selective approach to treat AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Apolipoproteína E4/antagonistas & inibidores , Placa Amiloide/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Apolipoproteína E3/antagonistas & inibidores , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Humanos , Camundongos , Camundongos Knockout , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia
13.
J Exp Med ; 213(12): 2635-2654, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27810929

RESUMO

Filamentous tau aggregates are hallmark lesions in numerous neurodegenerative diseases, including Alzheimer's disease (AD). Cell culture and animal studies showed that tau fibrils can undergo cell-to-cell transmission and seed aggregation of soluble tau, but this phenomenon was only robustly demonstrated in models overexpressing tau. In this study, we found that intracerebral inoculation of tau fibrils purified from AD brains (AD-tau), but not synthetic tau fibrils, resulted in the formation of abundant tau inclusions in anatomically connected brain regions in nontransgenic mice. Recombinant human tau seeded by AD-tau revealed unique conformational features that are distinct from synthetic tau fibrils, which could underlie the differential potency in seeding physiological levels of tau to aggregate. Therefore, our study establishes a mouse model of sporadic tauopathies and points to important differences between tau fibrils that are generated artificially and authentic ones that develop in AD brains.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Envelhecimento/patologia , Animais , Heparina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/ultraestrutura , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Agregados Proteicos , Conformação Proteica , Isoformas de Proteínas/metabolismo , Extratos de Tecidos , Proteínas tau/química
14.
Nat Med ; 20(2): 130-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24504409

RESUMO

A common feature of many neurodegenerative diseases is the deposition of ß-sheet-rich amyloid aggregates formed by proteins specific to these diseases. These protein aggregates are thought to cause neuronal dysfunction, directly or indirectly. Recent studies have strongly implicated cell-to-cell transmission of misfolded proteins as a common mechanism for the onset and progression of various neurodegenerative disorders. Emerging evidence also suggests the presence of conformationally diverse 'strains' of each type of disease protein, which may be another shared feature of amyloid aggregates, accounting for the tremendous heterogeneity within each type of neurodegenerative disease. Although there are many more questions to be answered, these studies have opened up new avenues for therapeutic interventions in neurodegenerative disorders.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Comunicação Celular/fisiologia , Modelos Biológicos , Doenças Neurodegenerativas/fisiopatologia , Deficiências na Proteostase/fisiopatologia , Proteínas Amiloidogênicas/classificação , Humanos , Transporte Proteico/fisiologia
15.
FEBS Lett ; 587(6): 717-23, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23395797

RESUMO

Increasing evidence demonstrates the transmissibility of fibrillar species of tau protein, but this has never been directly tested in neurons, the cell type most affected by formation of tau inclusions in neurodegenerative tauopathies. Here we show that synthetic tau fibrils made from recombinant protein not only time-dependently recruit normal tau into neurofibrillary tangle-like insoluble aggregates in primary hippocampal neurons over-expressing human tau, but also induce neuritic tau pathology in non-transgenic neurons. This study provides highly compelling support for the protein-only hypothesis of pathological tau transmission in primary neurons and describes a useful neuronal model for studying the pathogenesis of tauopathies.


Assuntos
Hipocampo/citologia , Emaranhados Neurofibrilares/ultraestrutura , Proteínas tau/genética , Animais , Transmissão de Doença Infecciosa , Embrião de Mamíferos , Escherichia coli/genética , Expressão Gênica , Hipocampo/metabolismo , Humanos , Camundongos , Microscopia Eletrônica , Modelos Biológicos , Mutação , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Cultura Primária de Células , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Transfecção , Proteínas tau/metabolismo , Proteínas tau/ultraestrutura
16.
Nat Commun ; 2: 252, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21427723

RESUMO

The microtubule associated protein tau promotes neuronal survival through binding and stabilization of MTs. Phosphorylation regulates tau-microtubule interactions and hyperphosphorylation contributes to the aberrant formation of insoluble tau aggregates in Alzheimer's disease (AD) and related tauopathies. However, other pathogenic post-translational tau modifications have not been well characterized. Here we demonstrate that tau acetylation inhibits tau function via impaired tau-microtubule interactions and promotes pathological tau aggregation. Mass spectrometry analysis identified specific lysine residues, including lysine 280 (K280) within the microtubule-binding motif as the major sites of tau acetylation. Immunohistochemical and biochemical studies of brains from tau transgenic mice and patients with AD and related tauopathies showed that acetylated tau pathology is specifically associated with insoluble, Thioflavin-positive tau aggregates. Thus, tau K280 acetylation in our studies was only detected in diseased tissue, suggesting it may have a role in pathological tau transformation. This study suggests that tau K280 acetylation is a potential target for drug discovery and biomarker development for AD and related tauopathies.


Assuntos
Lisina/análise , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas Recombinantes/metabolismo , Acetilação , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Lisina/genética , Lisina/metabolismo , Masculino , Espectrometria de Massas , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Microtomia , Microtúbulos/patologia , Pessoa de Meia-Idade , Neurônios/patologia , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA