Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918018

RESUMO

The photogalvanic effects (PGEs) in low-dimensional devices have attracted great interests recently. Herein, based on non-equilibrium Green's function combined with density functional theory, we investigated spin-dependent PGE phenomena in the BiC photodetector for the case of linearly polarized light and zero bias. Due to the presence of strong spin-orbital interaction (SOI) and C3v symmetry for the BiC monolayer, the armchair and zigzag BiC photodetectors produce robust spin-dependent PGEs which possess the cos(2θ) and sin(2θ) relations on the photon energies. Especially, the armchair and Bi-vacancy armchair BiC photodetector can produce fully spin polarization, and pure spin current was found in the armchair and zigzag BiC photodetector. Furthermore, after introducing the Bi-vacancy, C-vacancy, Bi-doping and C-doping respectively, corresponding armchair and zigzag BiC photodetector can produce higher spin-dependent PGEs for their Cs symmetry. Moreover, the behaviors of spin-dependent photoresponse are highly anisotropic and can be tuned by the photon energy. This work suggested great potential applications of the BiC monolayer on PGE-driven photodetectors in low energy-consumption optoelectronics and spintronic devices. .

2.
Phys Chem Chem Phys ; 25(37): 25240-25250, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37700681

RESUMO

Searching for good anchoring materials that can suppress the shuttle effect is critical to large-scale commercialization of lithium-sulfur (Li-S) batteries. In this work, the adsorption behavior of lithium polysulfides (LiPSs, such as S8 and Li2Sn, n = 1, 2, 4, 6, and 8), the sulfur reduction reaction (SRR), the decomposition processes of Li2S and the diffusion behavior of Li atoms on intrinsic and doped 2D biphenylene (BIP) are systematically investigated by employing the first-principles calculation method. Calculations show that the adsorption energies of LiPSs on the electrolyte (DOL and DME) are smaller than those on the intrinsic/B doped BIP. The moderate anchoring strength (0.8-2.0 eV) between LiPSs and the BIP can effectively suppress the shuttle effect. Moreover, the Gibbs free energy barrier for SRR is 0.72/0.64 eV on intrinsic/B doped BIP. The dissociation energy barrier of Li2S on intrinsic/B doped BIP is 1.35 eV, while the diffusion energy barrier of Li atoms on intrinsic/B doped BIP is 0.18 eV/0.30 eV. Lower energy barriers are conducive to enhancing the discharging and charging efficiency. Therefore, intrinsic and B doped BIP are predicted as good anchoring materials for Li-S batteries.

3.
Phys Chem Chem Phys ; 25(7): 5443-5452, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744599

RESUMO

Designing an anchoring layer on the sulfur electrode has been considered one of the effective approaches to promoting the real application of room-temperature sodium-sulfur (RT-Na-S) batteries. In this work, based on the first-principles calculation method, the potential of pristine and doped borophosphene (BP) as anchoring materials for Na-S batteries has been investigated. The calculated adsorption energies of sodium polysulfides (NaPSs) adsorbed on pristine and doped substrates are higher than those of NaPSs adsorbed with the electrolytes (DOL&DME), indicating that the shuttle effect could be well alleviated. Meanwhile, the projected density of states (PDOS) suggests that the metallic characteristics of the adsorption systems are still well preserved, which is in favor of improving the electronic conductivity. More importantly, excellent electrocatalytic properties of the substrates are exhibited by reducing the catalytic decomposition energy barriers of Na2S, in which 0.27/0.79/1.02 eV is found on the pristine/N-doped/C-doped BP, indicating that the electrochemical processes could be improved smoothly. Therefore, it could be expected that pristine and doped BP are excellent anchoring materials for sodium-sulfur batteries.

4.
Phys Chem Chem Phys ; 25(3): 2430-2438, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598374

RESUMO

Searching for high-performance anode materials and CO2 adsorption materials are key factors for next-generation renewable energy technologies and mitigation of the greenhouse effect. Herein, we report a novel two-dimensional (2D) BC2P monolayer with great potential as an anode material for lithium-ion batteries (LIBs) and as a material for CO2 adsorption. The adsorption energies of Li atoms and CO2 molecules on the BC2P supercell are negative enough to assure stability and safety under operating conditions. More intriguingly, the BC2P monolayer possesses a very high theoretical capacity of 1018.8 mA g h-1 for LIBs. In addition, the diffusion energy barriers of Li on the BC2P supercell are 0.26 and 0.87 eV, showing good charge/discharge capability, and the electrode potential of Li is beneficial to their performance as an anode material. Moreover, four chemical and three physical adsorption sites were verified, indicating that the CO2 molecule was effectively adsorbed on the BC2P supercell. These desirable properties make the BC2P monolayer a promising 2D material for application in LIBs and for CO2 adsorbents aimed at highly efficient CO2 capture.

5.
Theor Appl Genet ; 135(8): 2655-2664, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781583

RESUMO

KEY MESSAGE: A new adult plan resistance gene YrBm for potentially durable resistance to stripe rust was mapped on wheat chromosome arm 4BL in landrace Baimangmai. SSR markers closely flanking YrBm were developed and validated for use in marker-assisted selection. The wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) frequently acquires new virulences and rapidly adapts to environmental stress. New virulences in Pst populations can cause previously resistant varieties to become susceptible. If those varieties were widely grown, consequent epidemics can lead to yield losses. Identification and deployment of genes for durable resistance are preferred method for disease control. The Chinese winter wheat landrace Baimangmai showed a high level of adult plant resistance (APR) to stripe rust in a germplasm evaluation trial at Langfang in Hebei province in 2006 and has continued to confer high resistance over the following 15 years in field nurseries in Hebei, Sichuan and Gansu. A recombinant inbred line population of 200 F10 lines developed from a cross of Baimangmai and a susceptible genotype segregated for APR at a single locus on chromosome 4BL; the resistance allele was designated YrBm. Allelism tests of known Yr genes on chromosome 4B and unique closely flanking marker alleles Xgpw7272189 and Xwmc652164 among a panel of Chinese wheat varieties indicated that YrBm was located at a new locus. Moreover, those markers can be used for marker-assisted selection in breeding for stripe rust resistance.


Assuntos
Basidiomycota , Triticum , China , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
6.
Phys Chem Chem Phys ; 24(11): 6926-6934, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35253818

RESUMO

Constructing heterostructures via the van der Waals coupling effect has provided an effective method for developing novel electrode materials. In this work, based on the first-principles calculation method, we proposed to construct a hexagonal SiC2/C3B heterostructure and confirmed its stability by analyzing its structural properties. Meanwhile, the electrochemical performances of the SiC2/C3B heterostructure as a new platform for lithium-ion batteries were evaluated. The calculated results illustrate that the pristine SiC2/C3B heterostructure is a semiconductor with a small bandgap of 0.15 eV and the lithiated heterostructure exhibits metallic properties which ensure superior electrical conductivity for fast electron transfer. Moreover, the low diffusion barriers of the heterostructure are acceptable to guarantee a high-rate performance for the batteries. Compared with the anode properties of isolated SiC2 and C3B monolayers, an enhancement of the storage capacity of Li ions on the SiC2/C3B heterostructure is observed, which could reach up to 1489.72 mA h g-1. In addition, the ab initio molecular dynamics simulations reveal that the SiC2/C3B heterostructure could maintain excellent structural stability during the lithiation processes even at a temperature of 350 K. All these encouraging results show that the SiC2/C3B heterostructure has fascinating potential to be an advanced platform for lithium-ion batteries.

7.
Phys Chem Chem Phys ; 23(32): 17693-17702, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34374399

RESUMO

With the increasing demand for sustainable and clean energies, seeking high-capacity density electrode materials applied in rechargeable metal-ion batteries is urgent. In this work, using first-principles calculations, we evaluate the ternary pentagonal BCN monolayer as a compelling anode material for metal ion batteries. Calculations show that the penta-BCN monolayer has favorable metallic behaviors after adsorbing Li (Na) atoms. More interestingly, the saturated adsorption systems provide a large storage capacity of 2183.12 (1455.41) mA h g-1 for Li (Na) ions. A low energy barrier of 0.14 (0.16) eV for Li (Na) diffusion is observed, being smaller than the reported other two-dimensional anode materials. Also, the wrinkled structure of penta-BCN has been demonstrated to be very beneficial to improve the energy density and cycle life of batteries. The calculated low open-circuit voltage and peculiar surface area expansion together with the thermal stability of saturated intercalation structures, further indicate that the penta-BCN monolayer has great potential as the anode material for Li (Na) ion batteries.

8.
Phys Chem Chem Phys ; 22(35): 19913-19922, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32856621

RESUMO

Based on first-principles calculations and ab initio molecular dynamics simulations, multidimensional B4N materials are investigated as anode materials for lithium ion batteries. The present results show that the monolayer B4N can reach a remarkably high specific capacity of 1874.27 mA h g-1 and possesses a low diffusion barrier (0.29 eV). Testing of bilayer B4N and bulk B4N reveals that the materials exhibit irreversible structural phase transformation. They are transformed from a layered structure to the more stable cavity-channel structure due to the adsorption of Li atoms. The volume expansions of their saturated lithiation cavity-channel structures are about 12%, which is close to that of graphite (10%). Moreover, it is found that the energy barriers of the bilayer and bulk B4N are less than 0.5 eV in the cavity-channel. The saturated adsorption of bulk B4N yields a specific capacity of 468.57 mA h g-1, which is higher than that of commercial graphite (372 mA h g-1). More importantly, all the lithiation structures in the monolayer, bilayer, and bulk B4N are verified to be thermodynamically stable at 350 K. These findings may encourage further experimental investigation in the design of multidimensional B4N materials as novel candidate anode materials for lithium ion batteries.

9.
Opt Lett ; 43(4): 647-650, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444043

RESUMO

We fabricated a floating GaN microdisk supported by a silicon pillar through photolithography, dry-etching GaN, and isotropic wet-etching silicon methods. Single-mode ultraviolet whispering gallery mode (WGM) lasing was obtained from the floating GaN microdisk under optical pumping conditions at room temperature. The features of WGM lasing, i.e., the threshold, emission intensity, and lasing mode number, were characterized. A two-dimensional finite-difference time-domain simulation about the optical field contour profile also confirmed the resonance mechanism of WGM lasing. This work can help realize single-mode WGM lasing with high quality factor and low threshold.

10.
Phys Chem Chem Phys ; 19(16): 10644-10650, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28397893

RESUMO

In zero-gap semimetallic silicene, introducing a sizable band gap without degrading its high carrier mobility is vital to its application in optoelectronic devices. Herein, we design a novel atomically thin system based on silicene and arsenene nanocomposites (Si/As heterostructure), which could open a direct band gap of about 125 meV at the K point in silicene. Moreover, its band gap is linearly controllable over a wide range even with a semiconductor-metal transition by the external electric field (E⊥), with an impressive band gap of up to 328 meV at E⊥ = -0.9 V Å-1. Additionally, the Si/As heterostructure can exhibit pronounced optical absorption in the far infrared range. The binding energy of the first bright exciton is as large as 623 meV, which can be significantly increased with an enhanced E⊥. The tunable bandgap together with a superior optical absorption makes the Si/As heterostructure a potential candidate for nanoelectronic and optoelectronic applications.

11.
Transl Neurosci ; 15(1): 20220341, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38736723

RESUMO

Calmodulin-dependent protein kinases (CaMKs) are widely regarded as "memory molecules" due to their role in controlling numerous neuronal functions in the brain, and the CaMK signaling pathway plays a crucial role in controlling synaptic plasticity. Suanzaoren decoction (SZRD) can improve depression-like behavior and thus has potential benefits in the clinical treatment of depression; however, its mechanism of action is not fully understood. In this study, we found that key proteins in the CaMK signaling pathway were regulated by the decoction used to treat depression. The purpose of this research was to ascertain if the SZRD's therapeutic efficacy in the treatment of depression is associated with the modulation of key proteins in the CaMK signaling pathway. A rat model of depression was created by exposing the animals to chronic, unexpected, mild stress. Model rats were given intragastric administration of SZRD or fluoxetine every morning once a day. Protein and mRNA relative expression levels of CaM, CaMK I, and CaMK IV in the hippocampus were measured by Western blot, quantitative polymerase chain reaction, and immunohistochemistry in the hippocampus. Our findings demonstrated that SZRD significantly improved the mood of depressed rats. This indicates that SZRD, by modulating the CaMK signaling system, may alleviate depressive symptoms and lessen work and life-related pressures.

12.
J Ethnopharmacol ; 327: 117975, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis (LF) is a common reversible consequence of chronic liver damage with limited therapeutic options. Yinchen Gongying decoction (YGD) composed of two homologous plants: (Artemisia capillaris Thunb, Taraxacum monochlamydeum Hand.-Mazz.), has a traditionally application as a medicinal diet for acute icteric hepatitis. However, its impact on LF and underlying mechanisms remain unclear. AIM OF THE STUDY: This study aims to assess the impact of YGD on a carbon tetrachloride (CCl4) induced liver fibrosis and elucidate its possible mechanisms. The study seeks to establish an experimental foundation for YGD as a candidate drug for hepatic fibrosis. MATERIALS AND METHODS: LC-MS/MS identified 11 blood-entry components in YGD, and network pharmacology predicted their involvement in the FoxO signaling pathway, insulin resistance, and PI3K-AKT signaling pathway. Using a CCl4-induced LF mouse model, YGD's protective effects were evaluated in comparison to a positive control and a normal group. The underlying mechanisms were explored through the assessments of hepatic stellate cells (HSCs) activation, fibrotic signaling, and inflammation. RESULTS: YGD treatment significantly improved liver function, enhanced liver morphology, and reduced liver collagen deposition in CCl4-induced LF mice. Mechanistically, YGD inhibited HSC activation, elevated MMPs/TIMP1 ratios, suppressed the FoxO1/TGF-ß1/Smad2/3 and YAP pathways, and exhibited anti-inflammatory and antioxidant effects. Notably, YGD improved the insulin signaling pathway. CONCLUSION: YGD mitigates LF in mice by modulating fibrotic and inflammatory pathways, enhancing antioxidant responses, and specifically inhibiting FoxO1/TGF-ß1/Smad2/3 and YAP signal pathways.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Cromatografia Líquida , Fosfatidilinositol 3-Quinases/metabolismo , Células Estreladas do Fígado , Espectrometria de Massas em Tandem , Fígado , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Tetracloreto de Carbono/farmacologia
13.
Biosci Biotechnol Biochem ; 77(6): 1207-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23748758

RESUMO

Due to the great diversity in protein expression productivity, a customized transient gene expression (TGE) method was used in the present study to optimize transient expression of three antibodies. Several factors, including host cells, temperature, valproic acid (VPA) treatment, various vectors, and additives were optimized independently and then combined to form a customized TGE protocol for each antibody. In the event, the optimized TGE conditions for three antibodies were different from each other. Compared with the TGE in CHO-S cells by pCDNA3.1 expression vector, the expression productivities of 8C11 cAb, 37 hAb, and 10F7 cAb showed 16-fold, 293-fold, and 19-fold increases respectively by the customized TGE method. For 8C11 cAb, coexpressing L-chain and H-chain on different plasmids led to higher yields. The customized TGE method is an alternative approach that can greatly improve the expression productivity of a variety of recombinant proteins.


Assuntos
Anticorpos/genética , Formação de Anticorpos , Expressão Gênica/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Mamíferos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transfecção , Ácido Valproico/farmacologia
14.
Clin Exp Ophthalmol ; 41(4): 329-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23009037

RESUMO

BACKGROUND: To determine the difference in the rate of myopic progression between children wearing single vision lenses with undercorrection of +0.50 D and children whose myopia is fully corrected, and to explore the factors that may influence the process. DESIGN: Randomized, controlled, double-blind trial. PARTICIPANTS: Two hundred children aged 7-15 years with low-to-moderate myopia (-1.5 D to -6.0 D), astigmatism <-1.5 D and anisometropia <1.0 D. METHODS: The children were randomly allocated to wear single vision lenses with full correction or undercorrection by +0.50 D. Ocular examinations and questionnaire surveys for myopia-related factors will be performed every 6 months. MAIN OUTCOME MEASURES: Cycloplegic autorefraction and axial length. RESULTS: Of 200 children, 100 (50%) were girls, 41 (21%) esophoric and 82 (42%) exophoric at near. The characteristics of gender, age, age of myopia onset, phoria, eye dominance, parental myopia, refractive error, axial length, corneal curvature, mean time spent in near work and outdoor activities between the two groups were not significantly different. The accommodative responses at 33 cm, the accommodative demands and lags at infinity were significantly different in the two groups as they were measured with full correction in one group and undercorrection in the other. CONCLUSION: Full correction and Undercorrection of Myopia Evaluation Trial is a clinical trial designed to determine the effectiveness of undercorrection of myopia by +0.5 D on myopic progression in a population of school-aged children known to be susceptible to myopia and to identify the factors influencing the process.


Assuntos
Óculos , Miopia/terapia , Acomodação Ocular/fisiologia , Adolescente , Comprimento Axial do Olho/fisiopatologia , Biometria , Criança , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Masculino , Miopia/diagnóstico , Miopia/fisiopatologia , Refração Ocular/fisiologia , Projetos de Pesquisa , Inquéritos e Questionários , Resultado do Tratamento , Acuidade Visual/fisiologia
15.
Viruses ; 14(5)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632588

RESUMO

Narcissus degeneration virus (NDV), narcissus late season yellows virus (NLSYV) and narcissus yellow stripe virus (NYSV), which belong to the genus Potyvirus of the family Potyviridae, cause significant losses in the ornamental value and quality of narcissus. Several previous studies have explored the genetic diversity and evolution rate of narcissus viruses, but the analysis of the synonymous codons of the narcissus viruses is still unclear. Herein, the coat protein (CP) of three viruses is used to analyze the viruses' phylogeny and codon usage pattern. Phylogenetic analysis showed that NYSV, NDV and NLSYV isolates were divided into five, three and five clusters, respectively, and these clusters seemed to reflect the geographic distribution. The effective number of codon (ENC) values indicated a weak codon usage bias in the CP coding region of the three narcissus viruses. ENC-plot and neutrality analysis showed that the codon usage bias of the three narcissus viruses is all mainly influenced by natural selection compared with the mutation pressure. The three narcissus viruses shared the same best optimal codon (CCA) and the synonymous codon prefers to use codons ending with A/U, compared to C/G. Our study shows the codon analysis of different viruses on the same host for the first time, which indicates the importance of the evolutionary-based design to control these viruses.


Assuntos
Narcissus , Potyvirus , Códon , Uso do Códon , Narcissus/genética , Filogenia , Potyvirus/genética
16.
Front Plant Sci ; 13: 995746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160967

RESUMO

Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.

17.
J Colloid Interface Sci ; 624: 150-159, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660884

RESUMO

As an important energy storage and transportation carrier, hydrogen has the advantages of high combustion heat, non-toxic, and pollution-free energy conversion process. Bimetallic sulfide composites are one of the emerging catalysts for hydrogen evolution reactions (HER) during water splitting. Herein, a hydrothermal method has been employed for the in-situ synthesis of NiS2 nanoparticles/MoS2 nanosheets (NiS2/MoS2) hierarchical sphere anchored on reduced graphene oxide (RGO) for enhanced electrocatalytic HER activity. The NiS2/MoS2/RGO composite displays improved HER activity compared to MoS2/RGO and NiS2/RGO. The optimized NiS2/MoS2/RGO-9 requires only an overpotential of 136 mV at a current density of 10 mA cm-2, a small Tafel slope of 53.4 mV dec-1, and good stability in acid solution. The synergetic effect between NiS2 nanoparticles and MoS2 nanosheets is responsible for enhanced HER performance. Moreover, RGO provides the substrate for NiS2/MoS2 species and maintains the overall conductivity of NiS2/MoS2/RGO composites. Finally, density functional theory (DFT) calculations justify and approve the efficient HER activity of NiS2/MoS2/RGO in terms of lower Gibbs free energy (0.07 eV) and lower work function (3.98 eV) that subsequently enhance the dissociation of H2O.

18.
Front Hum Neurosci ; 16: 740003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153705

RESUMO

PURPOSE: This study investigated the impact of age and myopia on visual form perception among Chinese school-age children. METHODS: This cross-sectional study included 1,074 students with a mean age of 12.1 ± 4.7 (range = 7.3-18.9) years. The mean spherical equivalence refraction (SER) of the participants was -1.45 ± 2.07 D. All participants underwent distance visual acuity (VA), refraction measurement and local and global visual form perception test including orientation, parallelism, collinearity, holes and color discrimination tasks. RESULTS: The reaction times of emmetropes were slower than those of myopic and high myopic groups on both local (orientation, parallelism, and collinearity) and global discrimination tasks (all p < 0.05). A reduction in reaction times was found with increasing age on both local and global discrimination tasks (all p < 0.05). Age was significantly associated with both local and global visual perception performance after adjusting for gender, visual acuity and SER (orientation, ß = -0.54, p < 0.001; parallelism, ß = -0.365, p < 0.001; collinearity, ß = -0.28, p < 0.001; holes, ß = -0.319, p < 0.001; color, ß = -0.346, p < 0.001). CONCLUSIONS: This study revealed that both local and global visual perception improve with age among Chinese children and that myopes seem to have better visual perception than emmetropes.

19.
Sci China Life Sci ; 65(10): 2050-2061, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35301706

RESUMO

Myopia has become a major public health issue with an increasing prevalence. There are still individuals who experience similar environmental risk factors and, yet, remain non-myopic. Thus, there might be genetic factors protecting people from myopia. Considering the opposite ocular characteristics of primary angle closure glaucoma (PACG) to myopia and possible common pathway between them, we propose that certain risk genes for PACG might act as a protective factor for myopia. In this study, 2,678 young adults were genotyped for 37 targeted single nucleotide polymorphisms. Compared with emmetropia, rs1401999 (allele C: OR=0.795, P=0.03; genotype in dominant model: OR=0.759, P=0.02) and rs1258267 (allele A: OR=0.824, P=0.03; genotype in dominant model: OR=0.603, P=0.01) were associated with low to moderate myopia and high myopia, respectively. Genotype under recessive model of rs11024102 was correlated with myopia (OR=1.456, P=0.01), low to moderate myopia (OR=1.443, P=0.02) and high myopia (OR=1.453, P=0.02). However, these associations did not survive Bonferroni correction. Moreover, rs1401999, rs1258267, and rs11024102 showed associations with certain ocular biometric parameters in different groups. Our study suggests that ABCC5, CHAT and PLEKHA7 might be associated with refractive errors by contributing to the regulation of ocular biometry, in terms of uncorrected results and their biological functions.


Assuntos
Glaucoma de Ângulo Fechado , Miopia , Biometria , China , Estudos de Associação Genética , Predisposição Genética para Doença , Glaucoma de Ângulo Fechado/epidemiologia , Glaucoma de Ângulo Fechado/genética , Humanos , Miopia/genética , Polimorfismo de Nucleotídeo Único
20.
Clin Exp Optom ; 104(2): 201-206, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32869355

RESUMO

CLINICAL RELEVANCE: Large-scale data on the association between body stature with biometry parameters and refraction in young adults facilitates an understanding of myopia development. Taller persons have eyes with more negative refractions, longer axial lengths, deeper anterior chambers, flatter corneas, and higher axial length-corneal radius ratio. BACKGROUND: To determine the relationship between body stature with ocular biometry and refraction in young adults. METHODS: This was a cross-sectional university-based study of 16- to 26-year-old students in China. Cycloplegic refraction and corneal curvature were measured using an autorefractor. Ocular parameters, including axial length, anterior chamber depth and lens thickness, were measured using a Lenstar LS900. Data on height and weight were acquired from an annual standardised physical examination and body mass index was calculated. RESULTS: Of 7,971 participants examined in the school clinics, 5,657 (71.0 per cent) were available in the analysis. After adjusting for age, gender, parental myopia, time outdoors, near work and weight, each centimetre of height increase was associated with more negative refraction of -0.023-D, a 0.032-mm increase in axial length, a 0.003-mm increase in anterior chamber depth, a 0.008-mm increase in corneal curvature, and a 0.001 increase in axial length-corneal radius ratio. With regard to weight, a 1-kg heavier person was more likely to have less negative refraction of 0.011-D, a 0.001-mm increase in anterior chamber depth and a 0.002-mm increase in corneal curvature. A similar pattern of significant associations was also found in body mass index. CONCLUSION: Taller, young adults tended to have longer eyes, deeper anterior chambers, flatter corneas, higher axial length-corneal radius ratio, and more negative refraction, adjusted for potential confounders. In contrast, heavier and higher body mass index persons are more hyperopic. The differences in stature may partially explain the variation in refraction and ocular biometric parameters.


Assuntos
Refração Ocular , Universidades , Adolescente , Adulto , Câmara Anterior/diagnóstico por imagem , Comprimento Axial do Olho/diagnóstico por imagem , Biometria , China/epidemiologia , Córnea , Estudos Transversais , Olho/anatomia & histologia , Humanos , Estudantes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA