Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Orphanet J Rare Dis ; 15(1): 240, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907608

RESUMO

BACKGROUND: Desbuquois dysplasia (DBQD) was a rare autosomal recessive skeletal dysplasia. Calcium activated nucleotidase 1 (CANT1) mutation was identified as a common pathogenic change for DBQD type 1 and Kim variant but not for DBQD type 2. To our knowledge, all patients with DBQD type 1 currently found could be explained by mutations in the CANT1 gene, but mutations in the CANT1 gene might not be directly diagnosed as DBQD type 1. RESULTS: We have identified two novel CANT1 mutations (mut1: c.594G > A [p.Trp198*], mut2: c.734C > T [p.Pro245Leu]) in three children from a family of Chinese origin for the first time. Two of the three children could be diagnosed as typical DBQD type 1 and one child could not be diagnosed as DBQD type 1 based on the clinical data we had. To further clarify the effect of the two mutations of the CANT1 gene, we studied the CANT1 gene expression and detected the protein secretion and nucleotide enzyme activity through cDNA cloning and expression vectors construction for wild and mutant types. The mut1 was a nonsense mutation which could lead to premature termination and produced the truncated bodies; The CANT1 dimer of mut2 was significantly reduced and even undetectable. The extracellular secretion of mut1 was extremely high while mut2 was significantly reduced compared with the wild type. And mut1 and mut2 also could result in a significant reduction in the activity of CANT1 nucleotidease. From the results we could deduce that the two mutations of the CANT1 gene were the causes of the two cases in this study. CONCLUSIONS: Regarding the particularity of the cases reported in this study, the pathogenesis of CANT1 might be more complicated. The genetic and phenotype of three children with the same genetic background need to be further studied. Larger cohort of patients was needed to establish genotype-phenotype correlations in DBQD.


Assuntos
Nanismo , Criança , Clonagem Molecular , Dimerização , Humanos , Mutação/genética , Nucleotidases/genética , Conformação Proteica
2.
J Chin Med Assoc ; 79(11): 633-638, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720678

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR.


Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Doenças Retinianas/genética , Adolescente , Adulto , Idoso , Pré-Escolar , Oftalmopatias Hereditárias , Vitreorretinopatias Exsudativas Familiares , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Mol Cytogenet ; 9: 31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27099631

RESUMO

BACKGROUND: Chromosomal abnormalities that result in genomic imbalances are main causes of congenital and developmental anomalies including intellectual disability and multiple congenital malformations. In this report we describe four patients from three families with imbalanced translocations. Only a small percentage of imbalanced translocation individuals can be born to live, most of them were aborted in embryonic period. It is of great significances to precisely analysis the chromosome variation to study the relationship between genotype and phenotype. RESULTS: Four patients showed common clinical manifestations including delayed growth, intellectual disability, language barrier and facial dysmorphisms. In addition to the above features, lower limbs dysplasia and both foot eversion were found in patient 1, brachydactylic hand, cerebellar ataxia and congenital heart defects were also found in patient 4. Conventional karyotype analysis revealed abnormal karyotypes 46, XX, der (6) t (6: 10) (p23; q24), 46, XX, der (20) t (3; 20) (p23; p13) and 46, XX, der (22) t (3; 22) (q27; q13.3) in the four patients, respectively. Array-CGH analyses confirmed 23.6 Mb duplication on 10q25.1-q26.3 and 0.9 Mb deletions on 6p25.3, 19.9 Mb duplication on 3p24.3-p26.3 and 0.25 Mb deletion on 20p13 and 12.5 Mb duplication on 3q27.2-q29 and 1.9 Mb deletions on 22q13.2-q13.33 in the four patients, respectively. CONCLUSION: Parents with balanced translocation are passed the imbalanced chromosome to patient, and the partial monosomy and partial trisomy lead to multiple congenital malformations of four patients.

4.
BMC Med Genomics ; 7: 18, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24731722

RESUMO

BACKGROUND: DNA methylation is a crucial epigenetic modification of the genome which is involved in embryonic development, transcription, chromatin structure, X chromosome inactivation, genomic imprinting and chromosome stability. Consistent with these important roles, DNA methylation has been demonstrated to be required for vertebrate early embryogenesis and essential for regulating temporal and spatial expression of genes controlling cell fate and differentiation. Further studies have shown that abnormal DNA methylation is associated with human diseases including the embryonic development diseases. We attempt to study the DNA methylation status of CpG islands in fetus related to fetus growth and development. METHODS: GeneChip® Human Tiling 2.0R Array set is used for analysis of methylated DNA in a whole-genome wide in 8 pairs amniotic fluid and maternal blood DNA samples. RESULTS: We found 1 fetus hypermethylation DNA markers and 4 fetus hypomethylation DNA markers though a Genome-wide analysis. These DNA markers all found to be associated with the critical genes for fetus growth and development (SH2D3C gene, EML3 gene, TRIM71 gene, HOXA3 gene and HOXA5 gene). CONCLUSIONS: These genes can be used as a biomarker for association studying of embryonic development, pathological pregnancy and so on. The present study has provided new and fundamental insights into the roles that DNA methylation has in embryonic development and in the pathological pregnancy.


Assuntos
Metilação de DNA/genética , Feto/metabolismo , Genoma Humano/genética , Adulto , Cromossomos Humanos Par 21/genética , Feminino , Marcadores Genéticos , Humanos , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA