Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neurochem ; 164(6): 764-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36084044

RESUMO

The chaperon protein sigma-1 receptor (S1R) has been discovered over 40 years ago. Recent pharmacological studies using S1R exogenous ligands demonstrated a promising therapeutical potential of targeting the S1R in several neurological disorders. Although intensive in vitro studies have revealed S1Rs are mainly residing at the membrane of the endoplasmic reticulum (ER), the cell-specific in vivo expression pattern of S1Rs is still unclear, mainly because of the lack of a reliable detection method which also prevented a comprehensive functional analysis. Here, first, we identified a highly specific antibody using S1R knockout (KO) mice and established an immunohistochemical protocol involving a 1% sodium dodecyl sulphate (SDS) antigen retrieval step. Second, we characterized the S1R expression in the mouse brain and can demonstrate that the S1R is widely expressed: in principal neurons, interneurons and all glial cell types. In addition, unlike reported in previous studies, we showed that the S1R expression in astrocytes is not colocalized with the astrocytic cytoskeleton protein GFAP. Thus, our results raise concerns over previously reported S1R properties. Finally, we generated a Cre-dependent S1R conditional KO mouse (S1R flox) to study cell-type-specific functions of the S1R. As a proof of concept, we successfully ablated S1R expressions in neurons or microglia employing neuronal and microglial Cre-expressing mice, respectively. In summary, we provide powerful tools to cell-specifically detect, delete and functionally characterize S1R in vivo.


Assuntos
Neurônios , Receptores sigma , Camundongos , Animais , Neurônios/metabolismo , Neuroglia/metabolismo , Receptores sigma/genética , Astrócitos/metabolismo , Camundongos Knockout , Receptor Sigma-1
2.
Angew Chem Int Ed Engl ; 61(5): e202113759, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34859551

RESUMO

Artificial self-assembly systems typically exhibit limited capability in creating nature-inspired complex materials with advanced functionalities. Here, an effective co-assembly strategy is demonstrated for the facile creation of complex photonic structures with intriguing light reflections. Two different lipophilic and amphiphilic bottlebrush block copolymers (BCPs) are placed within shrinking droplets to enable a cooperative working mechanism of microphase segregation and organized spontaneous emulsification, respectively. Layer assemblies of the lipophilic BCP and uniform water nanodroplets stabilized by the bottlebrush surfactant are both generated, and co-assembled into a bridged lamellar structure with the alternating arrangement of layers and closely packed nanodroplet arrays. Janus microspheres with diverse dual optical characteristics are successfully fabricated, and reflected wavelengths of light are highly tunable simply by changing the formulation or molecular weight of BCP.

3.
Angew Chem Int Ed Engl ; 61(34): e202206723, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35718747

RESUMO

Biodegradable photonic microspheres with structural colors are promising substitutes to polluting microbeads and toxic dyes. Here, amphiphilic polyester-block-poly(ethylene glycol) bottlebrush block copolymers (BBCPs) with polylactic acid or poly(ϵ-caprolactone) as the hydrophobic block are synthesized and used to fabricate eco-friendly photonic pigments. Molecular parameters of BBCPs, including rigidity and symmetry, are precisely tailored by variation of side chain lengths, which enables effective manipulation of interfacial tension (γ). Organized spontaneous emulsion mechanism is enabled only when γ falls in a suitable range (10.6-14.3 mN m-1 ), producing ordered water-in-oil-in-water multiple emulsions and ordered porous structures. Consequently, highly saturated and tunable structural colors are observed due to coherent light scattering from the porous structures. Such photonic materials are nontoxic as confirmed by careful safety tests using aquatic model organisms.


Assuntos
Poliésteres , Polietilenoglicóis , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Água/química
4.
Biochem Biophys Res Commun ; 524(3): 525-532, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32014256

RESUMO

Diabetes mellitus (DM) is currently a major global health problem, which is associated with the development of cognitive dysfunction. However, although numerous clinical drugs for hyperglycemia have been used at present, safer and more effective therapeutic intervention strategies for diabetic cognitive impairments are still a huge challenge. Recently, several studies have indicated that a novel class of branched palmitic acid esters of hydroxyl stearic acids (PAHSAs) may have anti-diabetes and anti-inflammatory effects in insulin-resistant mice. Herein, whether the 9-PAHSA that one of the PAHSAs can attenuates DM-associated cognitive impairment in a mouse model of type 2 diabetes has been investigated. Our results showed that 9-PAHSA mildly prevented deficits of spatial working memory in Y-maze test while reversed the preference bias toward novel mice in Social choice test. Furthermore, the effect of REST on cognitive impairment of diabetes was explored for the first time. It was found that the expression of REST in diabetic mice increased, and the expression of target protein BDNF (Brain-derived neurotrophic factor) was decreased. After administration of 9-PAHSA, the situation was reversed. In summary, we conclude that exogenous supplement of 9-PAHSA can improve DM-related cognitive impairment to some extent, and the protective effect may be associated with decreased REST/NRSF (repressor element-1 silencing transcription factor/neuron-restrictive silence factor) and upregulated BDNF expression in frontal cortex.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Ácido Palmítico/uso terapêutico , Ácidos Esteáricos/uso terapêutico , Envelhecimento/sangue , Envelhecimento/patologia , Animais , Comportamento Animal , Glicemia/metabolismo , Peso Corporal , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/sangue , Diabetes Mellitus Experimental/sangue , Comportamento Exploratório , Masculino , Transtornos da Memória/sangue , Transtornos da Memória/complicações , Transtornos da Memória/fisiopatologia , Camundongos , Proteínas Repressoras/metabolismo , Comportamento Social , Memória Espacial
5.
Glia ; 67(6): 1094-1103, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724411

RESUMO

In the central nervous system, the type I transmembrane glycoprotein NG2 (nerve-glia antigen 2) is only expressed by pericytes and oligodendrocyte precursor cells (OPCs). Therefore, OPCs are also termed NG2 glia. Their fate during development has been investigated systematically in several genetically modified mouse models. Consensus exists that postnatal NG2 glia are restricted to the oligodendrocyte (OL) lineage, while, at least in the forebrain, embryonic NG2 glia could also generate astrocytes. In addition, experimental evidence for a neurogenic potential of NG2 glia in the early embryonic brain (before E16.5) has been provided. However, this observation is still controversial. Here, we took advantage of reliable transgene expression in NG2-EYFP and NG2-CreERT2 knock-in mice to study the fate of early embryonic NG2 glia. While pericytes were the main cells with robust NG2 gene activity at E12.5, only a few OPCs expressed NG2 at this early stage of embryogenesis. Subsequently, this proportion of OPCs increased from 3% (E12.5) to 11% and 25% at E14.5 and E17.5, respectively. When Cre DNA recombinase activity was induced at E12.5 and E14.5 and pups were analyzed at postnatal day 0 (P0) and P10, the vast majority of recombined cells, besides pericytes, belonged to the OL lineage cells, with few astrocytes in the ventral forebrain. In other brain regions such as brain stem, cerebellum, and olfactory bulb only OL lineage cells were detected. Therefore, we conclude that NG2 glia from early embryonic brain are restricted to a gliogenic fate and do not differentiate into neurons after birth.


Assuntos
Antígenos/biossíntese , Encéfalo/embriologia , Encéfalo/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteoglicanas/biossíntese , Animais , Química Encefálica/fisiologia , Linhagem da Célula/fisiologia , Desenvolvimento Embrionário/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/química , Neurônios/química
6.
Acta Pharmacol Sin ; 39(10): 1582-1589, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29795362

RESUMO

Both in vivo and in vitro studies have shown the beneficial effects of the delta-opioid receptor (DOR) on neurodegeneration in hypoxia/ischemia. We previously reported that DOR stimulation with [(D-Ala2, D-Leu5) enkephalin] (DADLE), a potent DOR agonist, for both a short (minutes) and long (days) time has notable protective effects against sodium azide (NaN3)-induced cell injury in primary cultured rat cortical neurons. We further demonstrated that short-term DADLE stimulation increased neuronal survival through the PKC-mitochondrial ERK pathway. However, the mechanisms underlying long-term neuroprotection by DADLE remain unclear. Here, we showed that DOR stimulation with DADLE (0.1 µmol/L) for 2 d selectively activates the PI3K/Akt/NF-κB pathway in NaN3-treated neurons; this activation increased Bcl-2 expression, attenuated Cyto c release and promoted neuronal survival. Further investigation revealed that sustained DADLE stimulation increased Bcl-2 expression by enhancing NF-κB binding to the Bcl-2 promoter and upregulating the histone acetylation levels of the Bcl-2 promoter. Our results demonstrate that prolonged DADLE exposure epigenetically promotes Bcl-2 expression and elicits neuroprotective effects in the NaN3 model via the PI3K/Akt/NF-κB pathway.


Assuntos
Leucina Encefalina-2-Alanina/farmacologia , Epigênese Genética/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Citocromos c/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Regulação para Cima
7.
Metab Brain Dis ; 33(6): 1887-1897, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30187180

RESUMO

To assess whether EGb761 could protect elderly diabetic mice with cognitive disorders and explore the role of beclin-1-mediated autophagy in these protective effects. Two-month-old male db/db-/- mice and wild-type C57/BL6 mice were randomly divided into six groups: db/db-/- control, db/db-/- 50 mg, db/db-/- 100 mg, wild-type (WT) control, WT 50 mg, and WT 100 mg. EGb761 (50 mg/kg or 100 mg/kg of bodyweight) was given by gavage once a day for 1 month from the age of 6 months. Y-maze and social choice tests were performed at 8th months. The blood pressure was measured. The imaging changes in the brain were measured using magnetic resonance imaging (MRI). The expression and distribution of beclin-1, LC3, and NF-κB were detected using immunohistochemistry staining and western blotting. Ultrastructure alterations in the hippocampus were observed using transmission electron microscopy. Compared with WT mice, the learning ability, memory and overall cognitive function of db/db-/- mice decreased (P < 0.05), and EGb761 could significantly improve the learning and memory function of db/db-/- mice (P < 0.05). EGb761 significantly improved systolic blood pressure in db/db-/- mice (P < 0.01). In addition, fMRI-bold showed a decline in the hippocampus of mice in the db/db-/- group compared with WT. EGb761 could improve these above changes. Immunohistochemistry staining and western blotting confirmed that EGb761 significantly increased beclin-1 and reduced LC3-II/I levels in the brains of db/db-/- mice (P < 0.05). NF-κB levels were obviously higher in the db/db-/- group than that in the WT group, and EGb761 significantly reduced NF-κB levels in db/db-/- mice (P < 0.05). There was a trend of increased autophagosomes in db/db-/- mice, but EGb761 did not change obviously the number of autophagosomes. Compared with normal aged WT mice, aging db/db-/- mice had more common complications of cerebral small vessel disease and cognitive dysfunction. EGb761 could significantly improve the cognitive function of aging db/db-/- mice via a mechanism that may involve the regulation of beclin-1, LC3, and NF-κB.


Assuntos
Envelhecimento/metabolismo , Proteína Beclina-1/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Proteína Beclina-1/agonistas , Disfunção Cognitiva/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Ginkgo biloba , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
J Mater Chem B ; 12(20): 4899-4908, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682549

RESUMO

Rapid extraction and screening of high-purity DNA fragments is an indispensable technology in advanced molecular biology. In this article, mesoporous magnetic composite microspheres (MSP@mTiO2) with tunable pore sizes were successfully fabricated for high-purity DNA extraction and fragment screening. Owing to the strong complexation ability of Ti ions with DNA phosphate groups and the high specific surface area of mesoporous microspheres, the MSP@mTiO2 microspheres possess excellent adsorption performance, where the saturated loading capacity of MSP@mTiO2 with a specific surface area of 122 m2 g-1 is as high as 575 µg mg-1 for a salmon sperm specimen. ITC experiments demonstrated that DNA adsorption on MSP@mTiO2 microspheres is mainly driven by entropy, which gives us more potential ways to regulate the balance of adsorption and desorption. Meanwhile, the mesoporous MSP@mTiO2 microspheres exhibit a much higher extraction efficiency compared with non-porous MSP@TiO2 for whole genome DNA from Arabidopsis thaliana plants. Interestingly, DNA fragments with different lengths could be screened by simply regulating the pore size of MSP@mTiO2 or the concentration of Na3PO4 in the eluent. A small pore size and low phosphate concentration are advantageous for the extraction of short-stranded DNA fragments, and DNA fragments (≤1000 bp) can be efficiently extracted when the mesopore size of MSP@mTiO2 is lower than 7.6 nm. The extraction results from the mesoporous composite microspheres provide new promising insights into the purification and screening of DNA from complex biological samples.


Assuntos
DNA , Microesferas , Titânio , Porosidade , Titânio/química , DNA/química , Animais , Tamanho da Partícula , Adsorção , Propriedades de Superfície , Arabidopsis , Salmão , Masculino , Espermatozoides/química
9.
ACS Appl Mater Interfaces ; 16(30): 39876-39885, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031057

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has received tremendous attention in the energy field owing to its high conductivity, ease of processing, biocompatibility, and low cost-effectiveness. Combining PEDOT:PSS and photonic crystals (PCs) is expected to promote the development of high-performance optoelectronic devices. The conductivity of PEDOT:PSS at present can only be measured through specific equipment, and the visualization of optoelectronic integration still remains a challenge. In this study, various patterned PEDOT:PSS inverse opal (PEDOT:PSS-IO) films are constructed by associating the conductivity of PEDOT:PSS with the structural color of PCs based on the synergistic effect of morphology/conformation transition, which achieves the visualization of optoelectronic integration. Morphology transition of the PEDOT:PSS-IO film alters from the interconnected to gradual closure pore structure, accompanied by an unusual blueshift of the stopband, which can be attributed to the collapse/reconstruction of the frame of the PEDOT:PSS-IO film. Conformation transition of PEDOT chains converts from the benzene to quinone structure, accompanying an enhancement of conductivity, which resulted from PSS removal and secondary doping. Under the induction of a polar solvent, the PEDOT:PSS-IO film brings the changes in optical/electrical dual-signals based on the synergistic effect of morphology/conformation transition. This phenomenon can be developed for the creation of a conductive PC pattern by using a polar solvent (water) as an ink, which is beneficial for the visualization of optoelectronic integration. This work provides essential significance for the fabrication of functional optoelectronic devices.

10.
ACS Appl Mater Interfaces ; 16(25): 32543-32553, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861471

RESUMO

Electrophoretic displays (EPDs) based on photonic crystals show great potential due to their reduced eye fatigue and low power consumption. However, the current image quality and service life of this system still face great challenges. In this work, we fabricated a new kind of electrically responsive photonic crystal (ERPC) device based on PSMA@SiO2 liquid colloidal crystals (LCCs) for EPDs. By introduction of the PSMA core with lower density and higher refractive index, the suspension stability and color saturation of PSMA@SiO2 LCCs were greatly enhanced compared with those of bare SiO2 LCCs. The PSMA@SiO2 LCCs showed brilliant colors, wide color tuning range (∼200 nm), and good reversibility under low voltages (<4 V). Interestingly, the transparency of PSMA@SiO2 LCCs could also be obviously regulated by an electric field, which was different from the traditional ways that change the thickness of PCs or contrast of refractive index (Δn) between the nanospheres and matrix. This transparency modulation offered a novel idea for the transmittance control of smart windows. As a proof of concept, we fabricated a new type of patterned ERPC device to demonstrate their potential in electrophoretic displays and smart windows with controllable transmittance under an electric field.

11.
Materials (Basel) ; 17(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276449

RESUMO

In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser interacts with metal, and their morphologies play an important role in defect formation and the final product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole shapes with defects using machine learning. However, such labeling is tedious, time-consuming, error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper, a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of X-ray images is presented. The pipeline contains a filtering method and an implementation of the BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images. The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with 300 training images/labels and 100 testing images for each trial. Prospective users may apply the presently trained tool or a retrained version following the approach used here to automatically label keyhole shapes in large image sets.

12.
Nat Commun ; 15(1): 6340, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068155

RESUMO

Molecular pathways mediating systemic inflammation entering the brain parenchyma to induce sepsis-associated encephalopathy (SAE) remain elusive. Here, we report that in mice during the first 6 hours of peripheral lipopolysaccharide (LPS)-evoked systemic inflammation (6 hpi), the plasma level of adenosine quickly increased and enhanced the tone of central extracellular adenosine which then provoked neuroinflammation by triggering early astrocyte reactivity. Specific ablation of astrocytic Gi protein-coupled A1 adenosine receptors (A1ARs) prevented this early reactivity and reduced the levels of inflammatory factors (e.g., CCL2, CCL5, and CXCL1) in astrocytes, thereby alleviating microglial reaction, ameliorating blood-brain barrier disruption, peripheral immune cell infiltration, neuronal dysfunction, and depression-like behaviour in the mice. Chemogenetic stimulation of Gi signaling in A1AR-deficent astrocytes at 2 and 4 hpi of LPS injection could restore neuroinflammation and depression-like behaviour, highlighting astrocytes rather than microglia as early drivers of neuroinflammation. Our results identify early astrocyte reactivity towards peripheral and central levels of adenosine as an important pathway driving SAE and highlight the potential of targeting A1ARs for therapeutic intervention.


Assuntos
Adenosina , Astrócitos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia , Receptor A1 de Adenosina , Encefalopatia Associada a Sepse , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Adenosina/metabolismo , Camundongos , Encefalopatia Associada a Sepse/metabolismo , Receptor A1 de Adenosina/metabolismo , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Sepse/imunologia , Sepse/complicações , Doenças Neuroinflamatórias/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/imunologia , Encéfalo/efeitos dos fármacos , Camundongos Knockout , Inflamação , Transdução de Sinais/efeitos dos fármacos
13.
Nanoscale ; 15(46): 18825-18831, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37965806

RESUMO

In this work, structural color inks with practical significance in anti-counterfeiting applications have been successfully manufactured by facilely mixing SiO2@PDA@PHEMA hybrid colloidal particles with the mediated molecules of HEMA. The appropriate rheological properties of these photonic inks provide high viscosity and self-supporting performance, ensuring sufficient interaction between particles to form short-range ordered arrays during the mixing and shearing process and thus generating non-iridescent colors. The strong and broad uniform light absorption capabilities of polydopamine (PDA) not only suppress the incoherent multiple scattering of the photonic inks, but also impart surprising optical anti-counterfeiting properties, i.e. black color under ambient illumination and dazzling reflective coloration under strong illumination. With the 3D printing technique, complicated angle-independent patterns with visualization and high fidelity are expected to be fabricated with the as-prepared photonic inks for real-life applications in smart anti-counterfeiting labels, thus encoding encrypted information and selective color rendering accessories.

14.
ACS Appl Mater Interfaces ; 15(36): 42170-42181, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37654059

RESUMO

Magnetic-assisted DNA testing technology has attracted much attention in genetics, clinical diagnostics, environmental microbiology, and molecular biology. However, achieving satisfying DNA adsorption and desorption efficiency in real samples is still a big challenge. In this paper, a new kind of high-quality magnetic composite microsphere of MM@PGMA-PA-Ti4+ was designed and prepared for DNA extraction and detection based on the strong interaction of Ti4+ and phosphate groups. By taking the advantages of high magnetic susceptibility and high Ti4+ content, the MM@PGMA-PA-Ti4+ microspheres possessed remarkable extraction capacity for mimic biological samples (salmon sperm specimens) with saturated loadings up to 533.0 mg/g. When the DNA feeding amount was 100 µg and the MM@PGMA-PA-Ti4+ dosage was 1 mg, the adsorption and desorption efficiencies were 80 and 90%, respectively. The kinetic and equilibrium extraction data were found to fit well with the pseudo-second-order model and Freundlich isotherm model. Furthermore, the MM@PGMA-PA-Ti4+ microspheres were successfully employed for DNA extraction from mouse epithelial-like fibroblasts. The extraction ability (84 ± 4 µg/mg) and DNA purity were superior to the comparative commercial spin kits, as evaluated by electrophoresis assays and qPCR analysis. The experimental results suggest that the MM@PGMA-PA-Ti4+ microspheres possess great potential as an adsorbent for DNA purification from complex biological samples.


Assuntos
Sêmen , Titânio , Masculino , Animais , Camundongos , Microesferas , Cátions , Fenômenos Magnéticos
15.
ACS Omega ; 7(8): 7304-7310, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252720

RESUMO

The effect of Y intercalation on the atomic, electronic, and magnetic properties of the graphene/Co(0001) interface is studied using state-of-the-art density functional theory calculations. Different structural models of the graphene/Y/Co(0001) interface are considered: (i) graphene/Y/Co(0001), (ii) graphene/1ML-YCo2/Co(0001), and (iii) graphene/bulk-like-YCo2(111). It is found that the interaction strength between graphene and the substrate is strongly affected by the presence of Y at the interface and the electronic structure of graphene (doping and the appearance of the energy gap) is defined by the Y concentration. For the Co-terminated interfaces between graphene and the metallic support in the considered systems, the electronic structure of graphene is strongly disturbed, leading to the absence of the linear dispersion for the graphene π band; in the case of the Y-terminated interfaces, a graphene layer is strongly n-doped, but the linear dispersion for this band is preserved. Our calculations show that the magnetic anisotropy for the magnetic atoms at the graphene/metal interface is strongly affected by the adsorption of a graphene layer, giving a possibility for one to engineer the magnetic properties of the graphene/ferromagnet systems.

16.
Materials (Basel) ; 15(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057247

RESUMO

Selective laser melting (SLM) additive manufacturing (AM) exhibits uncertainties, where variations in build quality are present despite utilizing the same optimized processing parameters. In this work, we identify the sources of uncertainty in SLM process by in-situ characterization of SLM dynamics induced by small variations in processing parameters. We show that variations in the laser beam size, laser power, laser scan speed, and powder layer thickness result in significant variations in the depression zone, melt pool, and spatter behavior. On average, a small deviation of only ~5% from the optimized/reference laser processing parameter resulted in a ~10% or greater change in the depression zone and melt pool geometries. For spatter dynamics, small variation (10 µm, 11%) of the laser beam size could lead to over 40% change in the overall volume of the spatter generated. The responses of the SLM dynamics to small variations of processing parameters revealed in this work are useful for understanding the process uncertainties in the SLM process.

17.
Materials (Basel) ; 15(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35160651

RESUMO

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by a revolution powder analyzer). The effects of PSDs on the selective laser melting (SLM) process are identified by using in-situ high-speed X-ray imaging to observe the melt pool dynamics during the melting process. The results show that the powder beds made of powders with dense packing ratios exhibit larger build height during laser melting. The effects of PSD with efficient packing on powder flowability and selective laser melting process revealed in this work are important for understanding process uncertainties induced by feedstock powders and for designing mitigation approaches.

18.
Rev Sci Instrum ; 93(4): 043707, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489882

RESUMO

In powder-bed-based metal additive manufacturing (AM), the visualization and analysis of the powder spreading process are critical for understanding the powder spreading dynamics and mechanisms. Unfortunately, the high spreading speeds, the small size of the powder, and the opacity of the materials present a great challenge for directly observing the powder spreading behavior. Here, we report a compact and flexible powder spreading system for in situ characterization of the dynamics of the powders during the spreading process by high-speed x-ray imaging. The system enables the tracing of individual powder movement within the narrow gap between the recoater and the substrate at variable spreading speeds from 17 to 322 mm/s. The instrument and method reported here provide a powerful tool for studying powder spreading physics in AM processes and for investigating the physics of granular material flow behavior in a confined environment.

19.
Nat Commun ; 13(1): 1079, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228541

RESUMO

The process instabilities intrinsic to the localized laser-powder bed interaction cause the formation of various defects in laser powder bed fusion (LPBF) additive manufacturing process. Particularly, the stochastic formation of large spatters leads to unpredictable defects in the as-printed parts. Here we report the elimination of large spatters through controlling laser-powder bed interaction instabilities by using nanoparticles. The elimination of large spatters results in 3D printing of defect lean sample with good consistency and enhanced properties. We reveal that two mechanisms work synergistically to eliminate all types of large spatters: (1) nanoparticle-enabled control of molten pool fluctuation eliminates the liquid breakup induced large spatters; (2) nanoparticle-enabled control of the liquid droplet coalescence eliminates liquid droplet colliding induced large spatters. The nanoparticle-enabled simultaneous stabilization of molten pool fluctuation and prevention of liquid droplet coalescence discovered here provide a potential way to achieve defect lean metal additive manufacturing.

20.
Neural Regen Res ; 16(1): 43-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32788446

RESUMO

In the mammalian central nervous system, nerve-glia antigen 2 (NG2) glia are considered the fourth glial population in addition to astrocytes, oligodendrocytes and microglia. The fate of NG2 glia in vivo has been carefully studied in several transgenic mouse models using the Cre/loxP strategy. There is a clear agreement that NG2 glia mainly serve as progenitors for oligodendrocytes and a subpopulation of astrocytes mainly in the ventral forebrain, whereas the existence of a neurogenic potential of NG2 glia is lack of adequate evidence. This mini review summarizes the findings from recent studies regarding the fate of NG2 glia during development. We will highlight the age-and-region-dependent heterogeneity of the NG2 glia differentiation potential. We will also discuss putative reasons for inconsistent findings in various transgenic mouse lines of previous studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA