Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FASEB J ; 36(5): e22285, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363389

RESUMO

The processes of activation, extravasation, and migration of immune cells to a site are early and essential steps in the induction of an acute inflammatory response. These events are an essential part of the inflammatory cascade, which involves multiple regulatory steps. Using a murine air pouch model of inflammation with LPS as an inflammation inducer, we demonstrate that isoenzymes of the neuraminidase family (NEU1, 3, and 4) play essential roles in these processes by acting as positive or negative regulators of leukocyte infiltration. In genetically knocked-out (KO) mice for different NEU genes (Neu1 KO, Neu3 KO, Neu4 KO, and Neu3/4 double KO mice) with LPS-induced air pouch inflammation, leukocytes at the site of inflammation were counted, and the inflamed tissue was analyzed using immunohistochemistry. Our data show that leukocyte recruitment was decreased in NEU1- and NEU3-deficient mice, while it was increased in NEU4-deficient animals. Consistent with these results, systemic as well as pouch exudate levels of pro-inflammatory cytokines were reduced in Neu1 and increased in Neu4 KO mice. Pharmacological inhibitors specific for NEU1, NEU3, and NEU4 isoforms also affected leukocyte recruitment. Together our data demonstrate that NEU isoenzymes have distinct-and even opposing-effects on leukocyte recruitment, and therefore warrant further investigation to determine their mechanisms and importance as regulators of the inflammatory cascade.


Assuntos
Isoenzimas , Neuraminidase , Animais , Citocinas , Inflamação , Isoenzimas/genética , Leucócitos , Camundongos , Neuraminidase/genética
2.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838679

RESUMO

Natural polysaccharides with high viscosity, good thermal stability, and biocompatibility can improve the mechanical properties of inorganic silica aerogels and enhance their application safety. However, the effects of the preparation methods of polysaccharide-silica aerogels on their microstructure and application properties have not been systematically studied. To better investigate the effect of the microstructure on the properties of aerogel materials, two aerogels with different structures were prepared using Konjac glucomannan (KGM) and tetraethoxysilane (TEOS) via physical blending (KTB) and co-precursor methods (KTC), respectively. The structural differences between the KTB and KTC aerogels were characterized, and the thermal insulation and fire-retardant properties were further investigated. The compressive strength of the KTC aerogels with a cross-linked interpenetrating network (IPN) structure was three times higher than that of the KTB aerogels, while their thermal conductivity was 1/3 of that of the KTB aerogels. The maximum limiting oxygen index (LOI) of the KTC aerogels was 1.4 times, the low peak heat release rate (PHRR) was reduced by 61.45%, and the lowest total heat release (THR) was reduced by 41.35% compared with the KTB aerogels. The results showed that the KTC aerogels with the IPN have better mechanical properties, thermal insulation, and fire-retardant properties than the simple physically blending KTB aerogels. This may be due to the stronger hydrogen-bonding interactions between KGM and silica molecules in the KTC aerogels under the unique forcing effect of the IPN, thus enhancing their structural stability and achieving complementary properties. This work will provide new ideas for the microstructure design of aerogels and the research of new thermal insulation and fire-retardant aerogels.


Assuntos
Retardadores de Chama , Mananas , Força Compressiva , Dióxido de Silício
3.
Chem Rev ; 118(17): 8188-8241, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-29979587

RESUMO

The plasma membrane of cells contains a diverse array of lipids that provide important structural and biological features. Glycolipids are typically a minor component of the cell membrane and consist primarily of glycosphingolipids (GSLs). GSLs in vertebrates contain a multifarious assortment of glycan headgroups, which can be important to biological functions based on lipid-lipid and lipid-protein interactions. The design of probes to study these complex targets requires advanced synthetic methodologies. In this Review, we will discuss recent advances in chemical and chemoenzymatic synthesis of GSLs in conjunction with the use of these approaches to design new probes. Examples using either chemical or enzymatic semisynthesis methods starting from isolated GSLs will also be reviewed. Focusing primarily on vertebrate glycolipids, we will highlight examples of radionuclide, fluorophore, photoresponsive, and bioorthogonal tagged GSL probes.


Assuntos
Técnicas de Química Sintética/métodos , Glicoesfingolipídeos/síntese química , Sondas Moleculares/síntese química , Configuração de Carboidratos , Glicosídeo Hidrolases/química , Glicoesfingolipídeos/química , Glicosilação , Glicosiltransferases/química , Sondas Moleculares/química
4.
Bioorg Med Chem ; 26(19): 5349-5358, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29903413

RESUMO

Inhibitors of viral neuraminidase enzymes have been previously developed as therapeutics. Humans can express multiple forms of neuraminidase enzymes (NEU1, NEU2, NEU3, NEU4) that share a similar active site and enzymatic mechanism with their viral counterparts. Using a panel of purified human neuraminidase enzymes, we tested the inhibitory activity of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir, oseltamivir, and peramivir against each of the human isoenzymes. We find that, with the exceptions of DANA and zanamivir, these compounds show generally poor activity against the human neuraminidase enzymes. To provide insight into the interactions of viral inhibitors with human neuraminidases, we conducted molecular dynamics simulations using homology models based on coordinates reported for NEU2. Simulations revealed that an organized water is displaced by zanamivir in binding to NEU2 and NEU3 and confirmed the critical importance of engaging the binding pocket of the C7-C9 glycerol sidechain. Our results suggest that compounds designed to target the human neuraminidases should provide more selective tools for interrogating these enzymes. Furthermore, they emphasize a need for additional structural data to enable structure-based drug design in these systems.


Assuntos
Inibidores Enzimáticos/química , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Neuraminidase/metabolismo , Alinhamento de Sequência , Proteínas Virais/metabolismo , Zanamivir/química , Zanamivir/metabolismo
5.
Bioconjug Chem ; 25(11): 1911-5, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25340706

RESUMO

The immobilization of functional proteins onto solid supports using affinity tags is an attractive approach in recent development of protein microarray technologies. Among the commonly used fusion protein tags, glutathione S-transferase (GST) proteins have been indispensable tools for protein-protein interaction studies and have extensive applications in recombinant protein purification and reversible protein immobilization. Here, by utilizing pyrimidine-based small-molecule probes with a sulfonyl fluoride reactive group, we report a novel and general approach for site-selective immobilization of Schistosoma japonicum GST (sjGST) fusion proteins through irreversible and specific covalent modification of the tyrosine-111 residue of the sjGST tag. As demonstrated by sjGST-tagged eGFP and sjGST-tagged kinase activity assays, this immobilization approach offers the advantages of high immobilization efficiency and excellent retention of protein structure and activity.


Assuntos
Proteínas Imobilizadas/química , Proteínas Recombinantes de Fusão/química , Alcinos/química , Animais , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Schistosoma japonicum , Especificidade por Substrato
6.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712143

RESUMO

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), ß-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.

7.
Front Mol Biosci ; 9: 835757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281276

RESUMO

Cell migration to a site of inflammation is an important step of the immune response. This process is coordinated by cytokines, receptors, and the signal processing machinery of the cell. Many cellular receptors are glycosylated, and their activity can be modulated through changes in glycan structure. Furthermore, glycosylation can be critical to the folding and trafficking of receptors. In this work, we investigated the role of native human neuraminidase enzymes (NEU) in transmigration. We used a cultured T cell line (Jurkat) and a transwell assay with fibronectin (FN) coated wells and cytokines (IL-4 and TNF-α) as chemoattractants in the bottom chamber. We observed that NEU1, NEU3, and NEU4 were positive regulators of transmigration using an siRNA knockdown. Furthermore, we found that pharmacological inhibition of these enzymes inhibited transmigration. We conclude that human NEU isoenzymes NEU1, NEU3, and NEU4 can act as positive regulators of transmigration and should be investigated as targets for anti-inflammatory strategies.

8.
Front Cell Neurosci ; 16: 831977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281298

RESUMO

Microglia are intrinsic immune cells of the central nervous system and play a dual role (pro-inflammatory and anti-inflammatory) in the homeostasis of the nervous system. Neuroinflammation mediated by microglia serves as an important stage of ischemic hypoxic brain injury, cerebral hemorrhage disease, neurodegeneration and neurotumor of the nervous system and is present through the whole course of these diseases. Microglial membrane protein or receptor is the basis of mediating microglia to play the inflammatory role and they have been found to be upregulated by recognizing associated ligands or sensing changes in the nervous system microenvironment. They can then allosterically activate the downstream signal transduction and produce a series of complex cascade reactions that can activate microglia, promote microglia chemotactic migration and stimulate the release of proinflammatory factor such as TNF-α, IL-ß to effectively damage the nervous system and cause apoptosis of neurons. In this paper, several representative membrane proteins or receptors present on the surface of microglia are systematically reviewed and information about their structures, functions and specific roles in one or more neurological diseases. And on this basis, some prospects for the treatment of novel coronavirus neurological complications are presented.

9.
J Am Heart Assoc ; 10(4): e018756, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33554615

RESUMO

Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.


Assuntos
Aorta Abdominal/patologia , Aterosclerose/metabolismo , Doença da Artéria Coronariana/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Neuraminidase/metabolismo , Animais , Aorta Abdominal/metabolismo , Aterosclerose/patologia , Biomarcadores/metabolismo , Células Cultivadas , Doença da Artéria Coronariana/patologia , Modelos Animais de Doenças , Humanos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fagocitose
10.
ACS Chem Biol ; 15(6): 1328-1339, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32310634

RESUMO

The human neuraminidase enzymes (NEU1, NEU2, NEU3, and NEU4) are a class of enzymes implicated in pathologies including cancer and diabetes. Several reports have linked neuraminidase activity to the regulation of cell migration in cancer cells. Using an in vitro cell migration assay on fibronectin (FN) coated surfaces, we have investigated the role of these enzymes in integrin-mediated cell migration. We observed that neuraminidase inhibition caused significant retardation of cell migration in breast cancer (MDA-MB-231) and prostate cancer (PC-3) cell lines when using inhibitors of NEU3 and NEU4. In contrast, inhibition of NEU1 caused a significant increase in cell migration for the same cell lines. We concluded that the blockade of human neuraminidase enzymes with isoenzyme-selective inhibitors can lead to disparate results and has significant potential in the development of anticancer or wound healing therapeutics.


Assuntos
Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Neuraminidase/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia
11.
Chem Commun (Camb) ; 54(37): 4661-4664, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29542741

RESUMO

Using GST fusion protein tags is an attractive approach for protein immobilization. Here we report that pyrimidine-based small-molecule probes with a fluorophosphonate reactive group could specifically react with the tyrosine-111 residue of the Schistosoma japonicum GST (sjGST) tag, and these probes could rapidly and site-selectively immobilize sjGST fusion proteins while preserving their activities.


Assuntos
Glutationa Transferase/química , Proteínas de Helminto/química , Sondas Moleculares/química , Organofluorfosfonatos/química , Animais , Vidro/química , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Simulação de Acoplamento Molecular , Sondas Moleculares/síntese química , Organofluorfosfonatos/síntese química , Pirimidinas/síntese química , Pirimidinas/química , Proteínas Recombinantes de Fusão/química , Schistosoma japonicum/enzimologia , Sefarose/química , Tirosina/química
12.
J Med Chem ; 61(24): 11261-11279, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30457869

RESUMO

Inhibitors of human neuraminidase enzymes (NEU) are recognized as important tools for the study of the biological functions of NEU and will be potent tools for elucidating the role of these enzymes in regulating the repertoire of cellular glycans. Here we report the discovery of selective inhibitors of the human neuraminidase 1 (NEU1) and neuraminidase 2 (NEU2) enzymes with exceptional potency. A library of modified 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues, with variability in the C5- or C9-position, were synthesized and evaluated against four human neuraminidase isoenyzmes (NEU1-4). Hydrophobic groups with an amide linker at the C5 and C9 positions were well accommodated by NEU1, and a hexanamido group was found to give the best potency at both positions. While the C5-hexanamido-C9-hexanamido-DANA analogue did not show synergistic improvements for combined modification, an extended alkylamide at an individual position combined with a smaller group at the second gave increased potency. The best NEU1 inhibitor identified was a C5-hexanamido-C9-acetamido-DANA that had a Ki of 53 ± 5 nM and 340-fold selectivity over other isoenzymes. Additionally, we demonstrated that C5-modifications combined with a C4-guandino group provided the most potent NEU2 inhibitor reported, with a Ki of 1.3 ± 0.2 µM and 7-fold selectivity over other NEU isoenzymes.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Amidas/química , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuraminidase/genética , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
13.
J Med Chem ; 61(5): 1990-2008, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425031

RESUMO

Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme. Our most selective inhibitor for NEU3 has a Ki of 320 ± 40 nM and a 15-fold selectivity over other human neuraminidase isoenzymes. This inhibitor blocks glycolipid processing by NEU3 in vitro. To improve their pharmacokinetic properties, various esters of the best inhibitors were synthesized and evaluated. Finally, we confirmed that our best compounds exhibited selective inhibition of NEU orthologues from murine brain.


Assuntos
Ácido N-Acetilneuramínico/análogos & derivados , Neuraminidase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas , Camundongos , Bibliotecas de Moléculas Pequenas
14.
J Med Chem ; 57(12): 5112-28, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24915291

RESUMO

Bruton's tyrosine kinase (Btk) is an attractive drug target for treating several B-cell lineage cancers. Ibrutinib is a first-in-class covalent irreversible Btk inhibitor and has demonstrated impressive effects in multiple clinical trials. Herein, we present a series of novel 2,5-diaminopyrimidine covalent irreversible inhibitors of Btk. Compared with ibrutinib, these inhibitors exhibited a different selectivity profile for the analyzed kinases as well as a dual-action mode of inhibition of both Btk activation and catalytic activity, which counteracts a negative regulation loop for Btk. Two compounds from this series, 31 and 38, showed potent antiproliferative activities toward multiple B-cell lymphoma cell lines, including germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) cells. In addition, compound 31 significantly prevented tumor growth in a mouse xenograft model.


Assuntos
Acrilamidas/síntese química , Antineoplásicos/síntese química , Benzamidas/síntese química , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/síntese química , Acrilamidas/química , Acrilamidas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Xenoenxertos , Humanos , Linfoma de Células B , Camundongos Endogâmicos ICR , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA