Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Clin Pharmacol ; 90(2): 463-474, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37817504

RESUMO

AIMS: Bedaquiline, pretomanid and linezolid (BPaL) combination treatment against Mycobacterium tuberculosis is promising, yet safety and adherence concerns exist that motivate exploration of alternative dosing regimens. We developed a mechanistic modelling framework to compare the efficacy of the current and alternative BPaL treatment strategies. METHODS: Pharmacodynamic models for each drug in the BPaL combination treatment were developed using in vitro time-kill data. These models were combined with pharmacokinetic models, incorporating body weight, lesion volume, site-of-action distribution, bacterial susceptibility and pharmacodynamic interactions to assemble the framework. The model was qualified by comparing the simulations against the observed clinical data. Simulations were performed evaluating bedaquiline and linezolid approved (bedaquiline 400 mg once daily [QD] for 14 days followed by 200 mg three times a week, linezolid 1200 mg QD) and alternative dosing regimens (bedaquiline 200 mg QD, linezolid 600 mg QD). RESULTS: The framework adequately described the observed antibacterial activity data in patients following monotherapy for each drug and approved BPaL dosing. The simulations suggested a minor difference in median time to colony forming unit (CFU)-clearance state with the bedaquiline alternative compared to the approved dosing and the linezolid alternative compared to the approved dosing. Median time to non-replicating-clearance state was predicted to be 15 days from the CFU-clearance state. CONCLUSIONS: The model-based simulations suggested that comparable efficacy can be achieved using alternative bedaquiline and linezolid dosing, which may improve safety and adherence in drug-resistant tuberculosis patients. The framework can be utilized to evaluate treatment optimization approaches, including dosing regimen and duration of treatment predictions to eradicate both replicating- and non-replicating bacteria from lung and lesions.


Assuntos
Antituberculosos , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Linezolida/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Diarilquinolinas/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38844624

RESUMO

Incorporating realistic sets of patient-associated covariates, i.e., virtual populations, in pharmacometric simulation workflows is essential to obtain realistic model predictions. Current covariate simulation strategies often omit or simplify dependency structures between covariates. Copula models are multivariate distribution functions suitable to capture dependency structures between covariates with improved performance compared to standard approaches. We aimed to develop and evaluate a copula model for generation of adult virtual populations for 12 patient-associated covariates commonly used in pharmacometric simulations, using the publicly available NHANES database, including sex, race-ethnicity, body weight, albumin, and several biochemical variables related to organ function. A multivariate (vine) copula was constructed from bivariate relationships in a stepwise fashion. Covariate distributions were well captured for the overall and subgroup populations. Based on the developed copula model, a web application was developed. The developed copula model and associated web application can be used to generate realistic adult virtual populations, ultimately to support model-based clinical trial design or dose optimization strategies.

3.
Antimicrob Agents Chemother ; 66(8): e0036622, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862740

RESUMO

Quantitative systems pharmacology (QSP) modeling of the host immune response against Mycobacterium tuberculosis can inform the rational design of host-directed therapies (HDTs). We aimed to develop a QSP framework to evaluate the effects of metformin-associated autophagy induction in combination with antibiotics. A QSP framework for autophagy was developed by extending a model for host immune response to include adenosine monophosphate-activated protein kinase (AMPK)-mTOR-autophagy signaling. This model was combined with pharmacokinetic-pharmacodynamic models for metformin and antibiotics against M. tuberculosis. We compared the model predictions to mice infection experiments and derived predictions for the pathogen- and host-associated dynamics in humans treated with metformin in combination with antibiotics. The model adequately captured the observed bacterial load dynamics in mice M. tuberculosis infection models treated with metformin. Simulations for adjunctive metformin therapy in newly diagnosed patients suggested a limited yet dose-dependent effect of metformin on reduction of the intracellular bacterial load when the overall bacterial load is low, late during antibiotic treatment. We present the first QSP framework for HDTs against M. tuberculosis, linking cellular-level autophagy effects to disease progression and adjunctive HDT treatment response. This framework may be extended to guide the design of HDTs against M. tuberculosis.


Assuntos
Metformina , Mycobacterium tuberculosis , Tuberculose , Animais , Antibacterianos/farmacologia , Autofagia , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Farmacologia em Rede , Tuberculose/microbiologia
4.
Br J Clin Pharmacol ; 88(12): 5420-5427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921300

RESUMO

Clinical studies in healthy volunteers challenged with lipopolysaccharide (LPS), a constituent of the cell wall of Gram-negative bacteria, represent a key model to characterize the Toll-like receptor 4 (TLR4)-mediated inflammatory response. Here, we developed a mathematical modelling framework to quantitatively characterize the dynamics and inter-individual variability of multiple inflammatory biomarkers in healthy volunteer LPS challenge studies. Data from previously reported LPS challenge studies were used, which included individual-level time-course data for tumour necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8) and C-reactive protein (CRP). A one-compartment model with first-order elimination was used to capture the LPS kinetics. The relationships between LPS and inflammatory markers was characterized using indirect response (IDR) models. Delay differential equations were applied to quantify the delays in biomarker response profiles. For LPS kinetics, our estimates of clearance and volume of distribution were 35.7 L h-1 and 6.35 L, respectively. Our model adequately captured the dynamics of multiple inflammatory biomarkers. The time delay for the secretion of TNF-α, IL-6 and IL-8 were estimated to be 0.924, 1.46 and 1.48 h, respectively. A second IDR model was used to describe the induced changes of CRP in relation to IL-6, with a delayed time of 4.2 h. The quantitative models developed in this study can be used to inform design of clinical LPS challenge studies and may help to translate preclinical LPS challenge studies to humans.


Assuntos
Interleucina-8 , Lipopolissacarídeos , Humanos , Interleucina-6 , Fator de Necrose Tumoral alfa , Inflamação/induzido quimicamente , Inflamação/patologia , Biomarcadores , Proteína C-Reativa
5.
Crit Care ; 26(1): 265, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064438

RESUMO

BACKGROUND: Adequate antibiotic dosing may improve outcomes in critically ill patients but is challenging due to altered and variable pharmacokinetics. To address this challenge, AutoKinetics was developed, a decision support system for bedside, real-time, data-driven and personalised antibiotic dosing. This study evaluates the feasibility, safety and efficacy of its clinical implementation. METHODS: In this two-centre randomised clinical trial, critically ill patients with sepsis or septic shock were randomised to AutoKinetics dosing or standard dosing for four antibiotics: vancomycin, ciprofloxacin, meropenem, and ceftriaxone. Adult patients with a confirmed or suspected infection and either lactate > 2 mmol/L or vasopressor requirement were eligible for inclusion. The primary outcome was pharmacokinetic target attainment in the first 24 h after randomisation. Clinical endpoints included mortality, ICU length of stay and incidence of acute kidney injury. RESULTS: After inclusion of 252 patients, the study was stopped early due to the COVID-19 pandemic. In the ciprofloxacin intervention group, the primary outcome was obtained in 69% compared to 3% in the control group (OR 62.5, CI 11.4-1173.78, p < 0.001). Furthermore, target attainment was faster (26 h, CI 18-42 h, p < 0.001) and better (65% increase, CI 49-84%, p < 0.001). For the other antibiotics, AutoKinetics dosing did not improve target attainment. Clinical endpoints were not significantly different. Importantly, higher dosing did not lead to increased mortality or renal failure. CONCLUSIONS: In critically ill patients, personalised dosing was feasible, safe and significantly improved target attainment for ciprofloxacin. TRIAL REGISTRATION: The trial was prospectively registered at Netherlands Trial Register (NTR), NL6501/NTR6689 on 25 August 2017 and at the European Clinical Trials Database (EudraCT), 2017-002478-37 on 6 November 2017.


Assuntos
COVID-19 , Sepse , Choque Séptico , Adulto , Antibacterianos , Ciprofloxacina/uso terapêutico , Estado Terminal/terapia , Humanos , Pandemias , Sepse/tratamento farmacológico , Choque Séptico/tratamento farmacológico
6.
Br J Clin Pharmacol ; 87(3): 1234-1242, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32715505

RESUMO

AIMS: To explore the optimal data sampling scheme and the pharmacokinetic (PK) target exposure on which dose computation is based in the model-based therapeutic drug monitoring (TDM) practice of vancomycin in intensive care (ICU) patients. METHODS: We simulated concentration data for 1 day following four sampling schemes, Cmin , Cmax + Cmin , Cmax + Cmid-interval + Cmin , and rich sampling where a sample was drawn every hour within a dose interval. The datasets were used for Bayesian estimation to obtain PK parameters, which were used to compute the doses for the next day based on five PK target exposures: AUC24 = 400, 500, and 600 mg·h/L and Cmin = 15 and 20 mg/L. We then simulated data for the next day, adopting the computed doses, and repeated the above procedure for 7 days. Thereafter, we calculated the percentage error and the normalized root mean square error (NRMSE) of estimated against "true" PK parameters, and the percentage of optimal treatment (POT), defined as the percentage of patients who met 400 ≤ AUC24 ≤ 600 mg·h/L and Cmin ≤ 20 mg/L. RESULTS: PK parameters were unbiasedly estimated in all investigated scenarios and the 6-day average NRMSE were 32.5%/38.5% (CL/V, where CL is clearance and V is volume of distribution) in the trough sampling scheme and 27.3%/26.5% (CL/V) in the rich sampling scheme. Regarding POT, the sampling scheme had marginal influence, while target exposure showed clear impacts that the maximum POT of 71.5% was reached when doses were computed based on AUC24 = 500 mg·h/L. CONCLUSIONS: For model-based TDM of vancomycin in ICU patients, sampling more frequently than taking only trough samples adds no value and dosing based on AUC24 = 500 mg·h/L lead to the best POT.


Assuntos
Monitoramento de Medicamentos , Vancomicina , Antibacterianos/uso terapêutico , Área Sob a Curva , Teorema de Bayes , Cuidados Críticos , Humanos
7.
Pharm Res ; 37(9): 171, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32830297

RESUMO

PURPOSE: Bayesian forecasting is crucial for model-based dose optimization based on therapeutic drug monitoring (TDM) data of vancomycin in intensive care (ICU) patients. We aimed to evaluate the performance of Bayesian forecasting using maximum a posteriori (MAP) estimation for model-based TDM. METHODS: We used a vancomycin TDM data set (n = 408 patients). We compared standard MAP-based Bayesian forecasting with two alternative approaches: (i) adaptive MAP which handles data over multiple iterations, and (ii) weighted MAP which weights the likelihood contribution of data. We evaluated the percentage error (PE) for seven scenarios including historical TDM data from the preceding day up to seven days. RESULTS: The mean of median PEs of all scenarios for the standard MAP, adaptive MAP and weighted MAP method were - 7.7%, -4.5% and - 6.7%. The adaptive MAP also showed the narrowest inter-quartile range of PE. In addition, regardless of MAP method, including historical TDM data further in the past will increase prediction errors. CONCLUSIONS: The proposed adaptive MAP method outperforms standard MAP in predictive performance and may be considered for improvement of model-based dose optimization. The inclusion of historical data beyond either one day (standard MAP and weighted MAP) or two days (adaptive MAP) reduces predictive performance.


Assuntos
Antibacterianos/farmacocinética , Teorema de Bayes , Monitoramento de Medicamentos/métodos , Vancomicina/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cuidados Críticos , Feminino , Previsões , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Farmacocinética , Valor Preditivo dos Testes
8.
Artigo em Inglês | MEDLINE | ID: mdl-30833424

RESUMO

Dosing of vancomycin is often guided by therapeutic drug monitoring and population pharmacokinetic models in the intensive care unit (ICU). The validity of these models is crucial, as ICU patients have marked pharmacokinetic variability. Therefore, we set out to evaluate the predictive performance of published population pharmacokinetic models of vancomycin in ICU patients. The PubMed database was used to search for population pharmacokinetic models of vancomycin in adult ICU patients. The identified models were evaluated in two independent data sets which were collected from two large hospitals in the Netherlands (Amsterdam UMC, Location VUmc, and OLVG Oost). We also tested a one-compartment model with fixed values for clearance and volume of distribution, in which a clinical standard dosage regimen (SDR) was mimicked to assess its predictive performance. Prediction error was calculated to assess the predictive performance of the models. Six models plus the SDR model were evaluated. The model of Roberts et al. (J. A. Roberts, F. S. Taccone, A. A. Udy, J.-L. Vincent, F. Jacobs, and J. Lipman, Antimicrob Agents Chemother 55:2704-2709, 2011, https://doi.org/10.1128/AAC.01708-10) performed satisfactorily, with mean and median values of prediction error of 5.1% and -7.5%, respectively, for Amsterdam UMC, Location VUmc, patients, and -12.6% and -17.2% respectively, for OLVG Oost patients. The other models, including the SDR model, yielded high mean values (-49.7% to 87.7%) and median values (-56.1% to 66.1%) for both populations. In conclusion, only the model of Roberts et al. was able to validly predict the concentrations of vancomycin for our data, whereas other models and standard dosing were largely inadequate. Extensive evaluation should precede the adoption of any model in clinical practice for ICU patients.


Assuntos
Antibacterianos/farmacocinética , Vancomicina/farmacocinética , Adulto , Idoso , Algoritmos , Cuidados Críticos/estatística & dados numéricos , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade
9.
Crit Care ; 23(1): 185, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118061

RESUMO

BACKGROUND: Antibiotic exposure in intensive care patients with sepsis is frequently inadequate and is associated with poorer outcomes. Antibiotic dosing is challenging in the intensive care, as critically ill patients have altered and fluctuating antibiotic pharmacokinetics that make current one-size-fits-all regimens unsatisfactory. Real-time bedside dosing software is not available yet, and therapeutic drug monitoring is typically used for few antibiotic classes and only allows for delayed dosing adaptation. Thus, adequate and timely antibiotic dosing continues to rely largely on the level of pharmacokinetic expertise in the ICU. Therefore, we set out to assess the level of knowledge on antibiotic pharmacokinetics among these intensive care professionals. METHODS: In May 2018, we carried out a cross-sectional study by sending out an online survey on antibiotic dosing to more than 20,000 intensive care professionals. Questions were designed to cover relevant topics in pharmacokinetics related to intensive care antibiotic dosing. The preliminary pass mark was set by members of the examination committee for the European Diploma of Intensive Care using a modified Angoff approach. The final pass mark was corrected for clinical relevance as assessed for each question by international experts on pharmacokinetics. RESULTS: A total of 1448 respondents completed the survey. Most of the respondents were intensivists (927 respondents, 64%) from 97 countries. Nearly all questions were considered clinically relevant by pharmacokinetic experts. The pass mark corrected for clinical relevance was 52.8 out of 93.7 points. Pass rates were 42.5% for intensivists, 36.1% for fellows, 24.8% for residents, and 5.8% for nurses. Scores without correction for clinical relevance were worse, indicating that respondents perform better on more relevant topics. Correct answers and concise clinical background are provided. CONCLUSIONS: Clinically relevant pharmacokinetic knowledge on antibiotic dosing among intensive care professionals is insufficient. This should be addressed given the importance of adequate antibiotic exposure in critically ill patients with sepsis. Solutions include improved education, intensified pharmacy support, therapeutic drug monitoring, or the use of real-time bedside dosing software. Questions may provide useful for teaching purposes.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Competência Clínica/normas , Adulto , Antibacterianos/uso terapêutico , Competência Clínica/estatística & dados numéricos , Estado Terminal/terapia , Estudos Transversais , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Sepse/tratamento farmacológico , Inquéritos e Questionários
10.
Acta Pharmacol Sin ; 40(2): 243-256, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29773888

RESUMO

Rising evidence has shown the development of resistance to vascular endothelial growth factor receptor (VEGFR) inhibitors in the practices of cancer therapy. It is reported that the efficacy of axitinib (AX), a VEGFR inhibitor, is limited in the treatment of breast cancer as a single agent or in combination with other chemotherapeutic drugs due to the probability of rising population of cancer stem-like cells (CSCs) caused by AX. The present study evaluated the effect of dopamine (DA) improving AX's efficacy on MCF-7/ADR breast cancer in vitro and in vivo, and developed a pharmacokinetic-pharmacodynamic (PK-PD) model describing the in vivo experimental data and characterizing the interaction of effect between AX and DA. The results showed that AX up-regulated the expression of breast CSC (BCSC) markers (CD44+/CD24-/low) in vivo, and DA significantly synergized the inhibitory effect on tumor growth by deducting the BCSC frequency. The PK-PD model quantitatively confirmed the synergistic interaction with the parameter estimate of interaction factor ψ 2.43. The dose regimen was optimized as 60 mg/kg AX i.g. b.i.d. combined with 50 mg/kg DA i.p. q3d in the simulation study on the basis of the PK-PD model. The model where DA synergistically enhances the effect of AX in an all-or-none manner provides a possible solution in modeling the agents like DA. Moreover, the outcome of AX and DA combination therapy in MCF-7/ADR breast cancer provided further insight of co-administering DA in the treatment of the possible CSC-causing AX-resisting breast cancer. And this combination therapy has the prospect of clinical translation.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Axitinibe/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dopamina/farmacologia , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Axitinibe/farmacocinética , Docetaxel/farmacologia , Dopamina/farmacocinética , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
CNS Drugs ; 38(5): 349-373, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580795

RESUMO

Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.


Assuntos
Viroses do Sistema Nervoso Central , Vírus , Humanos , Viroses do Sistema Nervoso Central/tratamento farmacológico , Sistema Nervoso Central , Encéfalo , Barreira Hematoencefálica , Antivirais/farmacologia , Antivirais/uso terapêutico
13.
Clin Pharmacokinet ; 63(5): 657-668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530588

RESUMO

BACKGROUND AND OBJECTIVE: The use of bedaquiline as a treatment option for drug-resistant tuberculosis meningitis (TBM) is of interest to address the increased prevalence of resistance to first-line antibiotics. To this end, we describe a whole-body physiologically based pharmacokinetic (PBPK) model for bedaquiline to predict central nervous system (CNS) exposure. METHODS: A whole-body PBPK model was developed for bedaquiline and its metabolite, M2. The model included compartments for brain and cerebrospinal fluid (CSF). Model predictions were evaluated by comparison to plasma PK time profiles following different dosing regimens and sparse CSF concentrations data from patients. Simulations were then conducted to compare CNS and lung exposures to plasma exposure at clinically relevant dosing schedules. RESULTS: The model appropriately described the observed plasma and CSF bedaquiline and M2 concentrations from patients with pulmonary tuberculosis (TB). The model predicted a high impact of tissue binding on target site drug concentrations in CNS. Predicted unbound exposures within brain interstitial exposures were comparable with unbound vascular plasma and unbound lung exposures. However, unbound brain intracellular exposures were predicted to be 7% of unbound vascular plasma and unbound lung intracellular exposures. CONCLUSIONS: The whole-body PBPK model for bedaquiline and M2 predicted unbound concentrations in brain to be significantly lower than the unbound concentrations in the lung at clinically relevant doses. Our findings suggest that bedaquiline may result in relatively inferior efficacy against drug-resistant TBM when compared with efficacy against drug-resistant pulmonary TB.


Assuntos
Antituberculosos , Diarilquinolinas , Modelos Biológicos , Tuberculose Meníngea , Humanos , Diarilquinolinas/farmacocinética , Antituberculosos/farmacocinética , Antituberculosos/administração & dosagem , Tuberculose Meníngea/tratamento farmacológico , Adulto , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo , Masculino , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Feminino , Simulação por Computador , Pessoa de Meia-Idade , Encéfalo/metabolismo
14.
Clin Pharmacol Ther ; 115(4): 795-804, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37946529

RESUMO

Virtual patient simulation is increasingly performed to support model-based optimization of clinical trial designs or individualized dosing strategies. Quantitative pharmacological models typically incorporate individual-level patient characteristics, or covariates, which enable the generation of virtual patient cohorts. The individual-level patient characteristics, or covariates, used as input for such simulations should accurately reflect the values seen in real patient populations. Current methods often make unrealistic assumptions about the correlation between patient's covariates or require direct access to actual data sets with individual-level patient data, which may often be limited by data sharing limitations. We propose and evaluate the use of copulas to address current shortcomings in simulation of patient-associated covariates for virtual patient simulations for model-based dose and trial optimization in clinical pharmacology. Copulas are multivariate distribution functions that can capture joint distributions, including the correlation, of covariate sets. We compare the performance of copulas to alternative simulation strategies, and we demonstrate their utility in several case studies. Our work demonstrates that copulas can reproduce realistic patient characteristics, both in terms of individual covariates and the dependence structure between different covariates, outperforming alternative methods, in particular when aiming to reproduce high-dimensional covariate sets. In conclusion, copulas represent a versatile and generalizable approach for virtual patient simulation which preserve relationships between covariates, and offer an open science strategy to facilitate re-use of patient data sets.


Assuntos
Modelos Estatísticos , Simulação de Paciente , Humanos , Simulação por Computador
15.
Clin Pharmacokinet ; 62(3): 519-532, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802057

RESUMO

BACKGROUND: Site-of-action concentrations for bedaquiline and pretomanid from tuberculosis patients are unavailable. The objective of this work was to predict bedaquiline and pretomanid site-of-action exposures using a translational minimal physiologically based pharmacokinetic (mPBPK) approach to understand the probability of target attainment (PTA). METHODS: A general translational mPBPK framework for the prediction of lung and lung lesion exposure was developed and validated using pyrazinamide site-of-action data from mice and humans. We then implemented the framework for bedaquiline and pretomanid. Simulations were conducted to predict site-of-action exposures following standard bedaquiline and pretomanid, and bedaquiline once-daily dosing. Probabilities of average concentrations within lesions and lungs greater than the minimum bactericidal concentration for non-replicating (MBCNR) and replicating (MBCR) bacteria were calculated. Effects of patient-specific differences on target attainment were evaluated. RESULTS: The translational modeling approach was successful in predicting pyrazinamide lung concentrations from mice to patients. We predicted that 94% and 53% of patients would attain bedaquiline average daily PK exposure within lesions (Cavg-lesion) > MBCNR during the extensive phase of bedaquiline standard (2 weeks) and once-daily (8 weeks) dosing, respectively. Less than 5% of patients were predicted to achieve Cavg-lesion > MBCNR during the continuation phase of bedaquiline or pretomanid treatment, and more than 80% of patients were predicted to achieve Cavg-lung >MBCR for all simulated dosing regimens of bedaquiline and pretomanid. CONCLUSIONS: The translational mPBPK model predicted that the standard bedaquiline continuation phase and standard pretomanid dosing may not achieve optimal exposures to eradicate non-replicating bacteria in most patients.


Assuntos
Antituberculosos , Nitroimidazóis , Tuberculose , Animais , Humanos , Camundongos , Antituberculosos/uso terapêutico , Pulmão , Nitroimidazóis/farmacologia , Pirazinamida , Tuberculose/tratamento farmacológico
16.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111660

RESUMO

Early prediction, quantification and translation of cardiovascular hemodynamic drug effects is essential in pre-clinical drug development. In this study, a novel hemodynamic cardiovascular systems (CVS) model was developed to support these goals. The model consisted of distinct system- and drug-specific parameter, and uses data for heart rate (HR), cardiac output (CO), and mean atrial pressure (MAP) to infer drug mode-of-action (MoA). To support further application of this model in drug development, we conducted a systematic analysis of the estimation performance of the CVS model to infer drug- and system-specific parameters. Specifically, we focused on the impact on model estimation performance when considering differences in available readouts and the impact of study design choices. To this end, a practical identifiability analysis was performed, evaluating model estimation performance for different combinations of hemodynamic endpoints, drug effect sizes, and study design characteristics. The practical identifiability analysis showed that MoA of drug effect could be identified for different drug effect magnitudes and both system- and drug-specific parameters can be estimated precisely with minimal bias. Study designs which exclude measurement of CO or use a reduced measurement duration still allow the identification and quantification of MoA with acceptable performance. In conclusion, the CVS model can be used to support the design and inference of MoA in pre-clinical CVS experiments, with a future potential for applying the uniquely identifiable systems parameters to support inter-species scaling.

17.
Clin Pharmacokinet ; 61(6): 869-879, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262847

RESUMO

BACKGROUND AND OBJECTIVE: Previous pharmacokinetic (PK) studies of ciprofloxacin in intensive care (ICU) patients have shown large differences in estimated PK parameters, suggesting that further investigation is needed for this population. Hence, we performed a pooled population PK analysis of ciprofloxacin after intravenous administration using individual patient data from three studies. Additionally, we studied the PK differences between these studies through a post-hoc analysis. METHODS: Individual patient data from three studies (study 1, 2, and 3) were pooled. The pooled data set consisted of 1094 ciprofloxacin concentration-time data points from 140 ICU patients. Nonlinear mixed-effects modeling was used to develop a population PK model. Covariates were selected following a stepwise covariate modeling procedure. To analyze PK differences between the three original studies, random samples were drawn from the posterior distribution of individual PK parameters. These samples were used for a simulation study comparing PK exposure and the percentage of target attainment between patients of these studies. RESULTS: A two-compartment model with first-order elimination best described the data. Inter-individual variability was added to the clearance, central volume, and peripheral volume. Inter-occasion variability was added to clearance only. Body weight was added to all parameters allometrically. Estimated glomerular filtration rate on ciprofloxacin clearance was identified as the only covariate relationship resulting in a drop in inter-individual variability of clearance from 58.7 to 47.2%. In the post-hoc analysis, clearance showed the highest deviation between the three studies with a coefficient of variation of 14.3% for posterior mean and 24.1% for posterior inter-individual variability. The simulation study showed that following the same dose regimen of 400 mg three times daily, the area under the concentration-time curve of study 3 was the highest with a mean area under the concentration-time curve at 24 h of 58 mg·h/L compared with that of 47.7 mg·h/L for study 1 and 47.6 mg·h/L for study 2. Similar differences were also observed in the percentage of target attainment, defined as the ratio of area under the concentration-time curve at 24 h and the minimum inhibitory concentration. At the epidemiological cut-off minimum inhibitory concentration of Pseudomonas aeruginosa of 0.5 mg/L, percentage of target attainment was only 21%, 18%, and 38% for study 1, 2, and 3, respectively. CONCLUSIONS: We developed a population PK model of ciprofloxacin in ICU patients using pooled data of individual patients from three studies. A simple ciprofloxacin dose recommendation for the entire ICU population remains challenging owing to the PK differences within ICU patients, hence dose individualization may be needed for the optimization of ciprofloxacin treatment.


Assuntos
Ciprofloxacina , Cuidados Críticos , Ciprofloxacina/uso terapêutico , Simulação por Computador , Humanos , Infusões Intravenosas , Testes de Sensibilidade Microbiana
18.
CPT Pharmacometrics Syst Pharmacol ; 10(4): 350-361, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792207

RESUMO

Pharmacometric modeling can capture tumor growth inhibition (TGI) dynamics and variability. These approaches do not usually consider covariates in high-dimensional settings, whereas high-dimensional molecular profiling technologies ("omics") are being increasingly considered for prediction of anticancer drug treatment response. Machine learning (ML) approaches have been applied to identify high-dimensional omics predictors for treatment outcome. Here, we aimed to combine TGI modeling and ML approaches for two distinct aims: omics-based prediction of tumor growth profiles and identification of pathways associated with treatment response and resistance. We propose a two-step approach combining ML using least absolute shrinkage and selection operator (LASSO) regression with pharmacometric modeling. We demonstrate our workflow using a previously published dataset consisting of 4706 tumor growth profiles of patient-derived xenograft (PDX) models treated with a variety of mono- and combination regimens. Pharmacometric TGI models were fit to the tumor growth profiles. The obtained empirical Bayes estimates-derived TGI parameter values were regressed using the LASSO on high-dimensional genomic copy number variation data, which contained over 20,000 variables. The predictive model was able to decrease median prediction error by 4% as compared with a model without any genomic information. A total of 74 pathways were identified as related to treatment response or resistance development by LASSO, of which part was verified by literature. In conclusion, we demonstrate how the combined use of ML and pharmacometric modeling can be used to gain pharmacological understanding in genomic factors driving variation in treatment response.


Assuntos
Antineoplásicos/metabolismo , Neoplasias/tratamento farmacológico , Farmacogenética/instrumentação , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Teorema de Bayes , Variação Biológica da População/genética , Variações do Número de Cópias de DNA/genética , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Genômica , Humanos , Aprendizado de Máquina , Camundongos , Modelos Animais , Neoplasias/patologia , Valor Preditivo dos Testes , Resultado do Tratamento , Carga Tumoral/genética
19.
Artif Intell Med ; 112: 102003, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33581824

RESUMO

INTRODUCTION: In recent years, reinforcement learning (RL) has gained traction in the healthcare domain. In particular, RL methods have been explored for haemodynamic optimization of septic patients in the Intensive Care Unit. Most hospitals however, lack the data and expertise for model development, necessitating transfer of models developed using external datasets. This approach assumes model generalizability across different patient populations, the validity of which has not previously been tested. In addition, there is limited knowledge on safety and reliability. These challenges need to be addressed to further facilitate implementation of RL models in clinical practice. METHOD: We developed and validated a new reinforcement learning model for hemodynamic optimization in sepsis on the MIMIC intensive care database from the USA using a dueling double deep Q network. We then transferred this model to the European AmsterdamUMCdb intensive care database. T-Distributed Stochastic Neighbor Embedding and Sequential Organ Failure Assessment scores were used to explore the differences between the patient populations. We apply off-policy policy evaluation methods to quantify model performance. In addition, we introduce and apply a novel deep policy inspection to analyse how the optimal policy relates to the different phases of sepsis and sepsis treatment to provide interpretable insight in order to assess model safety and reliability. RESULTS: The off-policy evaluation revealed that the optimal policy outperformed the physician policy on both datasets despite marked differences between the two patient populations and physician's policies. Our novel deep policy inspection method showed insightful results and unveiled that the model could initiate therapy adequately and adjust therapy intensity to illness severity and disease progression which indicated safe and reliable model behaviour. Compared to current physician behavior, the developed policy prefers a more liberal use of vasopressors with a more restrained use of fluid therapy in line with previous work. CONCLUSION: We created a reinforcement learning model for optimal bedside hemodynamic management and demonstrated model transferability between populations from the USA and Europe for the first time. We proposed new methods for deep policy inspection integrating expert domain knowledge. This is expected to facilitate progression to bedside clinical decision support for the treatment of critically ill patients.


Assuntos
Estado Terminal , Sepse , Hemodinâmica , Humanos , Reforço Psicológico , Reprodutibilidade dos Testes , Sepse/terapia
20.
Front Pharmacol ; 11: 646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499697

RESUMO

INTRODUCTION: Antibiotic dosing in critically ill patients is challenging because their pharmacokinetics (PK) are altered and may change rapidly with disease progression. Standard dosing frequently leads to inadequate PK exposure. Therapeutic drug monitoring (TDM) offers a potential solution but requires sampling and PK knowledge, which delays decision support. It is our philosophy that antibiotic dosing support should be directly available at the bedside through deep integration into the electronic health record (EHR) system. Therefore we developed AutoKinetics, a clinical decision support system (CDSS) for real time, model informed precision antibiotic dosing. OBJECTIVE: To provide a detailed description of the design, development, validation, testing, and implementation of AutoKinetics. METHODS: We created a development framework and used workflow analysis to facilitate integration into popular EHR systems. We used a development cycle to iteratively adjust and expand AutoKinetics functionalities. Furthermore, we performed a literature review to select and integrate pharmacokinetic models for five frequently prescribed antibiotics for sepsis. Finally, we tackled regulatory challenges, in particular those related to the Medical Device Regulation under the European regulatory framework. RESULTS: We developed a SQL-based relational database as the backend of AutoKinetics. We developed a data loader to retrieve data in real time. We designed a clinical dosing algorithm to find a dose regimen to maintain antibiotic pharmacokinetic exposure within clinically relevant safety constraints. If needed, a loading dose is calculated to minimize the time until steady state is achieved. Finally, adaptive dosing using Bayesian estimation is applied if plasma levels are available. We implemented support for five extensively used antibiotics following model development, calibration, and validation. We integrated AutoKinetics into two popular EHRs (Metavision, Epic) and developed a user interface that provides textual and visual feedback to the physician. CONCLUSION: We successfully developed a CDSS for real time model informed precision antibiotic dosing at the bedside of the critically ill. This holds great promise for improving sepsis outcome. Therefore, we recently started the Right Dose Right Now multi-center randomized control trial to validate this concept in 420 patients with severe sepsis and septic shock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA