Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674140

RESUMO

During choriogenesis in insects, chorion (eggshell) is formed by surrounding follicular epithelial cells in ovarioles. However, the regulatory endocrine factor(s) activating choriogenesis and the effect of chemical components on eggshell deserve further exploration. In two representative coleopterans, a coccinellid Henosepilachna vigintioctopunctata and a chrysomelid Leptinotarsa decemlineata, genes encoding the 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and ultraspiracle (USP), and two chitin biosynthesis enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP) and chitin synthase (ChS1), were highly expressed in ovaries of the young females. RNA interference (RNAi)-aided knockdown of either HvEcR or Hvusp in H. vigintioctopunctata inhibited oviposition, suppressed the expression of HvChS1, and lessened the positive signal of Calcofluor staining on the chorions, which suggests the reduction of a chitin-like substance (CLS) deposited on eggshells. Similarly, RNAi of LdEcR or Ldusp in L. decemlineata constrained oviposition, decreased the expression of LdUAP1 and LdChS1, and reduced CLS contents in the resultant ovaries. Knockdown of LdUAP1 or LdChS1 caused similar defective phenotypes, i.e., reduced oviposition and CLS contents in the L. decemlineata ovaries. These results, for the first time, indicate that 20E signaling activates choriogenesis in two coleopteran species. Moreover, our findings suggest the deposition of a CLS on the chorions.


Assuntos
Besouros , Ecdisona , Interferência de RNA , Receptores de Esteroides , Transdução de Sinais , Animais , Besouros/metabolismo , Besouros/genética , Feminino , Ecdisona/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Oviposição/efeitos dos fármacos , Casca de Ovo/metabolismo , Ovário/metabolismo
2.
PLoS Genet ; 15(1): e1007423, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615614

RESUMO

Many animals exploit several niches sequentially during their life cycles, a fitness referred to as ontogenetic niche shift (ONS). To successfully accomplish ONS, transition between development stages is often coupled with changes in one or more primitive, instinctive behaviors. Yet, the underlining molecular mechanisms remain elusive. We show here that Leptinotarsa decemlineata larvae finish their ONS at the wandering stage by leaving the plant and pupating in soil. At middle wandering phase, larvae also switch their phototactic behavior, from photophilic at foraging period to photophobic. We find that enhancement of juvenile hormone (JH) signal delays the phototactic switch, and vise verse. Moreover, RNA interference (RNAi)-aided knockdown of LdPTTH (prothoracicotropic hormone gene) or LdTorso (PTTH receptor gene) impairs avoidance response to light, a phenotype nonrescuable by 20-hydroxyecdysone. Consequently, the RNAi beetles pupate at the soil surface or in shallow layer of soil, with most of them failing to construct pupation chambers. Furthermore, a combination of depletion of LdPTTH/LdTorso and disturbance of JH signal causes no additive effects on light avoidance response and pupation site selection. Finally, we establish that TrpA1 (transient receptor potential (TRP) cation channel) is necessary for light avoidance behavior, acting downstream of PTTH. We conclude that JH/PTTH cascade concomitantly regulates metamorphosis and the phototaxis switch, to drive ONS of the wandering beetles from plant into soil to start the immobile pupal stage.


Assuntos
Hormônios de Inseto/genética , Hormônios Juvenis/genética , Metamorfose Biológica/genética , Fototaxia , Animais , Besouros/genética , Besouros/crescimento & desenvolvimento , Ecdisterona/metabolismo , Aptidão Genética/genética , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA , Transdução de Sinais
3.
Arch Insect Biochem Physiol ; 107(1): e21782, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33724519

RESUMO

In Leptinotarsa decemlineata, a final-instar wandering larva typically undergoes an ontogenetic niche shift (ONS), from potato plant during the foraging stage to its pupation site below ground. Using high-throughput sequencing of the bacterial 16S ribosomal RNA gene, we determined the hypothesis that the L. decemlineata pupae harbor stage-specific bacteria to meet the physiological requirements for underground habitat. We identified 34 bacterial phyla, comprising 73 classes, 208 orders, 375 families, and 766 genera in the collected specimens. Microbes across phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were enriched in the pupae, while those in the phylum Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes dominated in the larvae and adults. A total of 18 genera, including Blastococcus, Corynebacterium_1, Gordonia, Microbacterium, Nocardia, Nocardioides, Rhodococcus, Solirubrobacter, Tsukamurella, Enterococcus, Acinetobacter, Escherichia_Shigella, Lysobacter, Pseudomonas, and Stenotrophomonas, were specifically distributed in pupae. Moreover, soil sterilizing removed a major portion of bacteria in pupae. Specifically, both Enterococcus and Pseudomonas were eliminated in the soil sterilizing and antibiotic-fed beetle groups. Furthermore, the pupation rate and fresh pupal weight were similar, whereas the emergence rate and adult weight were decreased in the antibiotic-fed beetles, compared with controls. The results demonstrate that a switch of bacterial communities occurs in the pupae; the pupal-specific bacteria genera are mainly originated from soil; this bacterial biodiversity improves pupa performance in soil. Our results provide new insight into the evolutionary fitness of L. decemlineata to different environmental niches.


Assuntos
Besouros/microbiologia , Microbiota , Pupa/microbiologia , Animais , Bactérias/classificação , Besouros/fisiologia , Ecossistema , Genes Bacterianos , Larva/microbiologia , Larva/fisiologia , Metagenômica/métodos , Metamorfose Biológica , Microbiota/genética , Pupa/fisiologia , RNA Ribossômico 16S/genética
4.
Pestic Biochem Physiol ; 175: 104838, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993963

RESUMO

Crustacean cardioactive peptide (CCAP), a highly conserved amidated neuropeptide, stimulates feeding in Drosophila melanogaster and Periplaneta americana, and regulates pupa-adult transition in Tribolium castaneum and Manduca sexta. In the present paper, we intended to address whether CCAP plays the dual roles in the Colorado potato beetle Leptinotarsa decemlineata. We found that the levels of Ldccap were high in the dissected samples of brain-corpora cardiaca-corpora allata complex and ventral nerve cord, midgut and hindgut in the final (fourth)-instar larvae. A pulse of 20-hydroxyecdysone triggered the expression of Ldccap in the central nervous system but decreased the transcription in the midgut. In contrast, juvenile hormone intensified the expression of Ldccap in the midgut. RNA interference (RNAi)-aided knockdown of Ldccap at the penultimate instar stage inhibited foliage consumption, reduced the contents of trehalose and chitin, and lowered the mRNA levels of two chitin biosynthesis genes (LdUAP1 and LdChSAb). Moreover, around 70% of the Ldccap RNAi larvae remained as prepupae, completely wrapped in the old larval exuviae, and finally died. The remaining RNAi beetles continually developed to severely-deformed adults: most having wrinkled and smaller elytra and hindwings, and shortened legs. Therefore, CCAP plays three distinct roles, stimulating feeding in foraging larval stage, regulating ecdysis, and facilitating wing expansion and appendage elongation in a coleopteran. In addition, Ldccap can be used as a potential target gene for developing novel management strategies against this coleopteran pest.


Assuntos
Besouros , Neuropeptídeos , Animais , Besouros/genética , Drosophila melanogaster , Proteínas de Insetos/genética , Larva , Muda , Neuropeptídeos/genética
5.
Pestic Biochem Physiol ; 160: 30-39, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519255

RESUMO

An exploration of novel control strategies for Leptinotarsa decemlineata is becoming more pressing given rapid evolution of insecticide resistance and rise of production loss of potato. Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) is a promising alternative for management. An important first step is to uncover possible RNA-interference (RNAi)-target genes effective against both young and old larvae. Taiman (Tai) is a basic-helix-loop-helix/Per-Arnt-Sim transcription factor that is involved in the mediation of both juvenile hormone (JH) and 20-hydroxyecdysone (20E) signaling. In the present paper, we found that continuous ingestion of dsTai for three days by third (penultimate)-instar larvae caused approximately 20% larval mortality and 80% pupation failure. The larval lethality resulted from failed cuticle and tracheae shedding, which subsequently reduced foliage consumption and nutrient absorption, and depleted lipid stores. In contrast, pupation failure derived from disturbed JH and 20E signals, and disordered nutrient homeostasis including, among others, inhibition of trehalose metabolism and reduction of chitin content. Knockdown of LdTai caused similar larval lethality and pupation impairment in second and fourth (final) larval instars. Therefore, LdTai is among the most attractive candidate genes for RNAi to control L. decemlineata larvae.


Assuntos
Besouros/crescimento & desenvolvimento , Inativação Gênica , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Animais , Ecdisterona/metabolismo , Técnicas de Silenciamento de Genes , Hormônios Juvenis/metabolismo , Interferência de RNA
6.
Pestic Biochem Physiol ; 143: 173-180, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183589

RESUMO

To accomplish consistent, long-term, integrated management (IPM) of the Colorado potato beetle, Leptinotarsa decemlineata (Say), research assessing the potential of novel, IPM-compatible insecticides is essential. Novaluron is a potent benzoylurea insecticide. In the present paper, we found that novaluron ingestion by the fourth-instar larvae inhibited foliage consumption, reduced larval fresh weight, and delayed development period, in a dose dependent manner. Most of the resulting larvae fail to pupate, and died at prepupae stage, with larvicidal activity comparable with those of cyhalothrin and spinosad but lower than those of fipronil and abamectin. Moreover, many surviving pupae that fed novaluron failed to emerge as adults, in a dose dependent pattern. Furthermore, feeding of novaluron significantly decreased chitin contents in body carcass (without midgut) and integument specimen, whereas the chitin concentration in the midgut peritrophic matrix was not affected. Furthermore, uridine diphosphate-N-acetylglucosamine-pyrophosphorylase gene (LdUAP1) and chitin synthase Aa (LdChSAa), which were mainly responsible for chitin biosynthesis in ectodermally-derived tissues, were surpressed and activated respectively after novaluron ingestion. Therefore, novaluron is an effective benzoylurea insecticide to L. decemlineata fourth-instar larvae. It inhibited chitin biosynthesis in ectodermally-derived tissues, disrupted ecdysis, impaired pupation and adult emergence, and led to death in juvenile life stages.


Assuntos
Quitina/biossíntese , Besouros/efeitos dos fármacos , Inseticidas/toxicidade , Compostos de Fenilureia/toxicidade , Animais , Quitina Sintase/metabolismo , Besouros/metabolismo , Ingestão de Alimentos , Larva/efeitos dos fármacos , Larva/metabolismo
7.
Arch Insect Biochem Physiol ; 92(4): 242-58, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27030662

RESUMO

Chitin synthase (ChS) plays a critical role in chitin synthesis and excretion. In this study, two ChS genes (LdChSA and LdChSB) were identified in Leptinotarsa decemlineata. LdChSA contains two splicing variants, LdChSAa and LdChSAb. Within the first, second, and third larval instars, the mRNA levels of LdChSAa, LdChSAb, and LdChSB coincide with the peaks of circulating 20-hydroxyecdysone (20E) and juvenile hormone (JH). In vitro culture of midguts and an in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide stimulated the expression of the three LdChSs. Conversely, a reduction of 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD repressed the expression of these LdChSs, and ingestion of halofenozide by LdSHD RNAi larvae rescued the repression. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, LdHR3, and LdFTZ-F1 reduced the expression levels of these genes. Similarly, in vitro culture and an in vivo bioassay showed that exogenous JH and a JH analog methoprene activated the expression of the three LdChSs, whereas a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated these LdChSs. It seems that JH upregulates LdChSs at the early stage of each instar, whereas a 20E pulse triggers the transcription of LdChSs during molting in L. decemlineata.


Assuntos
Quitina Sintase/genética , Besouros/enzimologia , Besouros/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Quitina Sintase/química , Quitina Sintase/metabolismo , Clonagem Molecular , Besouros/classificação , Besouros/crescimento & desenvolvimento , DNA Complementar/genética , DNA Complementar/metabolismo , Ecdisterona/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Isoenzimas/genética , Hormônios Juvenis/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
8.
Amino Acids ; 47(7): 1445-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25868655

RESUMO

Alanine aminotransferase (ALT) plays important physiological and biochemical roles in insect. In this study, a full-length Ldalt cDNA was cloned from Leptinotarsa decemlineata. It was ubiquitously expressed in the eggs, larvae, pupae and adults. In the adults, Ldalt mRNA was widely distributed in thorax muscles, fat body, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdalt1 and dsLdalt2) targeting Ldalt were constructed and bacterially expressed. After adults fed on dsLdalt1- and dsLdalt2-immersed foliage for 3 day, Ldalt mRNA abundance was significantly decreased by 79.5 and 71.1 %, and ALT activities were significantly reduced by 64.5 and 67.6 %, respectively. Moreover, silencing Ldalt affected free amino acid contents. Lysine was decreased by 100.0 and 100.0 %, and arginine was reduced by 87.5 and 89.4 %, respectively, in the hemolymph from dsLdalt1- and dsLdalt2-ingested beetles, compared with control ones. In contrast, proline was increased by 88.7 and 96.4 %. Furthermore, ingestion of dsLdalt1 and dsLdalt2 significantly decreased flight speed, shortened flight duration time and flight distance. In addition, knocking down Ldalt significantly increased adult mortality. These data imply that LdALT plays important roles in amino acid metabolism and in flight in L. decemlineata.


Assuntos
Alanina Transaminase/genética , Aminoácidos/metabolismo , Besouros/enzimologia , Proteínas de Insetos/genética , Alanina Transaminase/metabolismo , Sequência de Aminoácidos , Animais , Voo Animal , Técnicas de Silenciamento de Genes , Proteínas de Insetos/metabolismo , Larva/enzimologia , Dados de Sequência Molecular , Filogenia , Interferência de RNA , RNA de Cadeia Dupla/genética , Transcrição Gênica
9.
Arch Insect Biochem Physiol ; 90(3): 154-67, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26280246

RESUMO

Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation.


Assuntos
Besouros/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Animais , Besouros/crescimento & desenvolvimento , Motivos EF Hand , Hormônios Juvenis/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo
10.
Pestic Biochem Physiol ; 122: 86-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26071812

RESUMO

Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, ß- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes.


Assuntos
Carboxilesterase/genética , Besouros/efeitos dos fármacos , Besouros/genética , Nitrilas/farmacologia , Pirazóis/farmacologia , Piretrinas/farmacologia , Animais , Hidrolases de Éster Carboxílico/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inativação Metabólica/genética , Proteínas de Insetos/genética , Inseticidas/farmacologia , Dados de Sequência Molecular , Filogenia
11.
Pestic Biochem Physiol ; 123: 64-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26267054

RESUMO

RNA interference (RNAi) is a promising approach to control Leptinotarsa decemlineata. In this study, RNAi efficiency by double-stranded RNA (dsRNA) targeting S-adenosyl-L-homocysteine hydrolase (LdSAHase) was compared among L. decemlineata first- to fourth-instar larvae. Ingesting dsLdSAHase successfully decreased the target gene expression, caused lethality, inhibited growth and impaired pupation in an instar- and concentration-dependent manner. To study the role of Dicer2 and Argonaute2 genes in RNAi efficiency, we identified LdDcr2a, LdDcr2b, LdAgo2a and LdAgo2b. Their expression levels were higher in young larvae than those in old ones. Exposure to dsegfp for 6 h significantly elevated LdDcr2a, LdDcr2b, LdAgo2a and LdAgo2b mRNA levels in the first-, second-, third- and fourth-instar larvae. When the exposure periods were extended, however, the expression levels were gradually reduced. Continuous exposure for 72 h significantly repressed the expression of LdAgo2a and LdAgo2b in the first, second and third larval instars, and the four genes in final instars. Moreover, we found that dsLdSAHase-caused LdSAHase suppressions and larval mortalities were influenced by previous dsegfp exposure: 12 h of previous exposure increased LdSAHase silencing and mortality of the final instar larvae, whereas 72 h of exposure reduced LdSAHase silencing and mortality. Thus, it seems the activities of core RNAi-machinery proteins affect RNAi efficiency in L. decemlineata.


Assuntos
Besouros/metabolismo , Interferência de RNA , Adenosil-Homocisteinase/biossíntese , Animais , Proteínas Argonautas/biossíntese , Besouros/genética , Proteínas de Insetos/biossíntese , Larva , Ribonuclease III/biossíntese
12.
Pestic Biochem Physiol ; 114: 16-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25175645

RESUMO

Vacuolar-type H(+)-ATPases (vATPases) are localized in the apical membranes of nearly all epithelial tissues of insects, energize the membranes to absorb and/or secrete ions and fluids, and play essential roles in many physiological functions. Here we cloned and characterized a 1041-bp full-length vATPase subunit E cDNA (named as LdATPaseE) that encoded a 226-amino acid protein in Leptinotarsa decemlineata. LdATPaseE mRNA levels were constantly increased from egg to the third- and fourth-instar stages, dropped in wandering and pupal stages and were elevated again in the adult stage. It was highly expressed in ileum and rectum, moderately expressed in Malpighian tubules, midgut and foregut, and lowly expressed in fat body, ventral ganglion, epidermis and haemocytes in the fourth instars. After continuously ingested double-stranded RNAs originated from two LdATPaseE fragments LdATPaseE1 and LdATPaseE2, the target mRNA levels in the larvae were reduced by 85% and 55%, the larval growth and survival were significantly affected. Furthermore, topical application of fipronil, butane-fipronil, endosulfan and cypermethrin significantly upregulated LdATPaseE expression up to 8.3, 4.2, 2.8 and 6.2-fold 1 day after experiment, and up to 15.8, 3.4, 3.6 and 4.5-fold 2 days after treatment. It seems that depletion of vATPase subunit E is lethal, indicating that targeting vATPases by dsRNA appears a promising means of combating L. decemlineata. Moreover, vATPase subunit E is a pesticide inducible gene and may play a role in pesticide toxicity.


Assuntos
Besouros/enzimologia , Besouros/genética , Proteínas de Insetos/genética , Inseticidas/toxicidade , Interferência de RNA , ATPases Vacuolares Próton-Translocadoras/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Endossulfano/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Larva/enzimologia , Larva/genética , Dados de Sequência Molecular , Subunidades Proteicas/genética , Pirazóis/toxicidade , Piretrinas/toxicidade , RNA Mensageiro/metabolismo
13.
Pest Manag Sci ; 80(2): 282-295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37671631

RESUMO

BACKGROUND: Insect chitinases play crucial roles in degrading chitin in the extracellular matrix, affecting insect development and molting. However, our understanding of the specific functions of various chitinases in Leptinotarsa decemlineata is limited, hindering the deployment of novel gene-targeting technologies as pest management strategies. RESULTS: We identified and characterized 19 full-length complementary DNA (cDNA) sequences of chitinase genes (LdChts) in Leptinotarsa decemlineata. Despite having varying domain architectures, all these chitinases contained at least one chitinase catalytic domain. Phylogenetic analysis classified the chitinase proteins into ten distinct clusters (groups I-X). Expression profiles showed the highest expression in chitin-rich tissues or during specific developmental stages from the larva-to-pupa transition. Gene-specific RNA interference (RNAi) experiments provided valuable insight into chitinase gene function. Silencing of group II LdCht10 prevented larval-larval molting, larval-prepupal, and prepupal-pupal processes. Moreover, our study revealed that LdCht5, LdCht2, LdCht11, LdCht1, and LdCht3 from groups I and VII-X were specifically essential for the transition from prepupal to pupal stage, whereas LdIDGF2 from group V was necessary for the larval-prepupal metamorphic process. The chitinase gene LdCht7 from group III and LdIDGF4 from group V were involved in both the larva-to-prepupa and the prepupa-to-pupa shift. Additionally, our findings also shed light on the exclusive expression of nine chitinase genes within group IV in the digestive system, suggesting their potential role in regulating larval body weight and larva-to-pupa transition. CONCLUSION: Our results provide a comprehensive understanding of the functional specialization of chitinase genes during the molting process of various stages and identify potential targets for RNAi-based management of Leptinotarsa decemlineata. © 2023 Society of Chemical Industry.


Assuntos
Quitinases , Besouros , Animais , Larva , Pupa , Quitinases/genética , Filogenia , Quitina/metabolismo , Proteínas de Insetos/metabolismo , Interferência de RNA
14.
Insects ; 15(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39194827

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest of potato crops. While Knickkopf (Knk) genes are essential for insect cuticle formation, their roles in pests like L. decemlineata remain unclear. This study aims to identify and characterize Knk genes in L. decemlineata and explore their functions in larval development and cuticle integrity. We used genomic and transcriptomic databases to identify LdKnk-family genes, validated through RT-PCR and RACE. Gene expression was analyzed at various developmental stages and tissues using qRT-PCR. RNA interference (RNAi) and Transmission electron microscopy (TEM) were applied to determine the functional roles of these genes. Four LdKnk-family genes were identified. Spatio-temporal expression analysis indicated significant gene expression during larval molting and pupal stages, especially in the epidermis. RNAi experiments showed that silencing LdKnk and LdKnk3-5' led to reduced larval weight, cuticle thinning, and increased mortality, while LdKnk3-FL knockdown caused abnormal cuticle thickening and molting disruptions. LdKnk2 knockdown increased epicuticle and endocuticle thickness without visible phenotypic changes. The study highlights the essential roles of LdKnk-family genes in maintaining cuticle structure and integrity, suggesting their potential as targets for RNAi-based pest control.

15.
Pest Manag Sci ; 80(9): 4437-4449, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38656531

RESUMO

BACKGROUND: The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major potato (Solanum tuberosum) pest, infesting over 16 million km2 and causing substantial economic losses. The insect cuticle forms an apical extracellular matrix (ECM) envelope covering exposed organs to direct morphogenesis and confer structural protection. While select chitinase (Cht) genes have proven essential for larval development, their potential activities directing ECM remodeling underlying adult wing maturation remain undefined. RESULTS: We investigated the expression patterns and performed an oral RNA interference (RNAi) screen targeting 19 LdChts in late-instar L. decemlineata larvae. Subsequently, we assessed their effects on adult eclosion and wing characteristics. Knockdown of LdCht5, LdCht7, LdCht10, LdIDGF2, and LdIDGF4, as well as others from Group IV (LdCht15, LdCht12, LdCht17, and LdCht13) and Groups VII-X (LdCht2, LdCht11, LdCht1, and LdCht3), resulting in shrunken, misshapen elytra with reduced areal density, as well as transverse wrinkling and impaired wing-tip folding in hindwings. Scanning electron micrographs revealed eroded elytral ridges alongside thinned, ruptured hindwing veins, indicative of mechanical fragility post-LdCht suppression. Spectroscopic analysis uncovered biomolecular alterations underlying the elytral anomalies, including decreases in peaks representing chitin, proteins, and lipids. This loss of essential ECM components provides evidence for the fragility, wrinkling, and shrinkage observed in the RNAi groups. CONCLUSION: Our findings elucidate the crucial role of chitinases in the turnover of chitinous cuticles on beetle wings, offering insights into RNAi-based control strategies against this invasive pest. © 2024 Society of Chemical Industry.


Assuntos
Quitinases , Besouros , Larva , Asas de Animais , Besouros/enzimologia , Besouros/genética , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Animais , Quitinases/genética , Quitinases/metabolismo , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/enzimologia , Larva/genética , Interferência de RNA , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
16.
Pestic Biochem Physiol ; 107(3): 360-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24267698

RESUMO

Based on a Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, a total of 74 cytochrome P450 monooxygenase genes (Cyps) were identified. These genes fell into CYP2 clan, mitochondrial clan, CYP3 clan and CYP4 clan, and were classified into 19 families and 35 subfamilies according to standard nomenclature. Two new families were discovered in CYP4 clan, and were named CYP412 and CYP413 respectively. Four new families that were recently discovered in Tribolium castaneum, including mitochondrial family CYP353, CYP3 clan families CYP345 and CYP347, and CYP4 clan family CYP350, were also found in L. decemlineata. The phylogenetic trees of CYPs from L. decemlineata and other representative insect species were constructed, and these trees provided evolutionary insight for the genetic distance. Our results facilitate further researches to understand the functions and evolution of L. decemlineata Cyp genes. In order to find cyhalothrin-inducible Cyp genes, the expression levels of Cyps belonging to CYP12, CYP6, CYP9 and CYP4 families were determined by quantitative reverse transcriptase-PCR in cyhalothrin-treated and control fourth-instar larvae. Nine Cyp genes, i.e., Cyp12H2, Cyp6BH2, Cyp6BJ1, Cyp6BQ17, Cyp6EG1, Cyp6EH1, Cyp6EJ1 Cyp4BN13v1 and Cyp4BN15, were highly expressed in cyhalothrin-treated larvae. These CYPs are the candidates that are involved in cyhalothrin detoxification.


Assuntos
Besouros/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Besouros/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Ativação Enzimática/efeitos dos fármacos
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 30(2): 207-9, 2013 Apr.
Artigo em Zh | MEDLINE | ID: mdl-23568737

RESUMO

OBJECTIVE: To explore the feasibility of karyotype analysis using cells cultured from fetal bladder centesis samples. METHODS: Samples were derived from fetal bladder centesis for 3 fetuses featuring giant bladder and oligohydramnios. Following in vitro culture, cells were routinely processed and stained for chromosome analysis. RESULTS: For all 3 cases, cell culture has achieved success. Sufficient metaphase cells were obtained for chromosome counting and karyotype analysis. The karyotypes of the 3 fetuses were respectively 46, XY, 46, XX, t(1;5)(q22;q12)[7]/46, XX[4], and 46, XY. CONCLUSION: Cells cultured from fetal bladder centesis may be used for karyotype analysis following in vitro culturing. This new approach can enable prenatal chromosome analysis for fetuses featuring smaller gestational weeks, giant bladder and oligohydramnios.


Assuntos
Cariotipagem , Diagnóstico Pré-Natal/métodos , Bexiga Urinária/anormalidades , Células Cultivadas , Feminino , Humanos , Gravidez
18.
J Econ Entomol ; 105(2): 549-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22606826

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) in the north Xinjiang Uygur autonomous region has evolved resistance to various types of insecticides. Chlorantraniliprole is a novel anthranilic diamide insecticide that binds and activates ryanodine receptors. It exhibited excellent efficacy against L. decemlineata in several field trails in Europe. In the present paper, the susceptibility of L. decemlineata fourth-instar larvae derived from six field populations and L. decemlineata adults derived from three field populations to chlorantraniliprole was determined by a topical application. The fourth-instar larvae were substantially more susceptible to chlorantraniliprole than adults, although the range of susceptibility was far greater among the fourth-instar larvae. Regarding stomach toxicities, adult beetles were less susceptible to chlorantraniliprole than larvae. Chlorantraniliprole was most toxic to second-instar larvae, followed by third- and fourth-instar larvae. These data suggested that the appropriate timing for chlorantraniliprole spraying is the early larval stage. Moreover, the synergistic activities of chlorantraniliprole in combination with triphenyl phosphate, diethyl maleate, or piperonyl butoxide against fourth-instar larvae from two field populations and adults from one field population were tested. Piperonyl butoxide had synergistic effects with chlorantraniliprole against fourth-instar larvae but not against adult beetles. Conversely, triphenyl phosphate and diethyl maleate exerted little synergistic effects. It appears that there is a potential risk of resistance against chlorantraniliprole resulting from cytochrome P450 monooxygenase activity.


Assuntos
Besouros/efeitos dos fármacos , Controle de Insetos , Inseticidas/farmacologia , ortoaminobenzoatos/farmacologia , Animais , China , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Maleatos/metabolismo , Organofosfatos/metabolismo , Butóxido de Piperonila/metabolismo
19.
Pest Manag Sci ; 78(9): 3849-3858, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35104039

RESUMO

BACKGROUND: RNA interference (RNAi) is a breakthrough technology in pest control. It is highly efficient to Coleopteran pests such as the Colorado potato beetle Leptinotarsa decemlineata, a serious pest defoliator mainly attacking potatoes worldwide. The first step for effective pest control by RNAi is the development of effective and reliable target genes. RESULTS: Our results revealed that continuous ingestion of dsLdRan for 3 days successfully silenced the target gene, inhibited larval growth and killed 100% L. decemlineata larvae. When the bioassay began at the second-, third/fourth-instar larval stages, the larval lethality mainly occurred at the fourth larval instar and prepupal stages, respectively. Importantly, consumption of dsLdRan for 3 days by the newly-emerged males and females effectively knocked down the target transcript, reduced fresh weights and caused 100% of lethality within a week. The LdRan females possessed underdeveloped ovaries. CONCLUSION: Considering that the larvae, adults and eggs are simultaneously sited on the potato plants, bacterially-expressed dsLdRan is a potential RNAi-based strategy for managing L. decemlineata in the potato field. © 2022 Society of Chemical Industry.


Assuntos
Besouros , Solanum tuberosum , Animais , Feminino , Proteínas de Insetos/genética , Larva , Masculino , Interferência de RNA , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas ras/genética
20.
J Insect Physiol ; 132: 104266, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126099

RESUMO

Forkhead box O (FoxO) protein, a major downstream transcription factor of insulin/insulin-like growth factor signaling/target of rapamycin pathway (IIS/TOR), is involved in the regulation of larval growth and the determination of organ size. FoxO also interacts with 20-hydroxyecdysone (20E) and juvenile hormone (JH) signal transduction pathways, and hence is critical for larval development in holometabolans. However, whether FoxO plays a critical role during larval metamorphosis needs to be further determined in Leptinotarsa decemlineata. We found that 20E stimulated the expression of LdFoxO. RNA interference (RNAi)-aided knockdown of LdFoxO at the third-instar stage repressed 20E signaling and reduced larval weight. Although the resultant larvae survived through the third-fourth instar ecdysis, around 70% of the LdFoxO depleted moribund beetles developmentally arrested at prepupae stage. These LdFoxO depleted beetles were completely wrapped in the larval exuviae, gradually darkened and finally died. Moreover, approximately 12% of the LdFoxO RNAi beetles died as pharate adults. Ingestion of either 20E or JH by the LdFoxO depletion beetles excessively rescued the corresponding hormonal signals, but could not alleviate larval performance and restore defective phenotypes. Therefore, FoxO plays an important role in regulation of larval-pupal-adult transformation in L. decemlineata, in addition to mediation of IIS/TOR pathway and stimulation of ecdysteroidogenesis.


Assuntos
Besouros , Fatores de Transcrição Forkhead , Metamorfose Biológica/genética , Animais , Besouros/embriologia , Besouros/genética , Besouros/crescimento & desenvolvimento , Besouros/metabolismo , Ecdisterona/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Proteínas de Insetos/metabolismo , Hormônios Juvenis/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Muda/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA