Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Gu Shang ; 37(3): 319-26, 2024 Mar 25.
Artigo em Zh | MEDLINE | ID: mdl-38515423

RESUMO

Acetabular quadrilateral plate injury has become a hot spot and focus in the field of orthopaedic trauma and pelvic floor function in recent years. Although there are five fracture types,they are all based on fracture morphology,without considering the pulling force of ligaments,joint capsular and muscles. A perfect classification needs to describe the displacement of bone mass in three-dimensional space to better guide reduction and fixation. The seven incision and exposure methods are still the traditional open-eye surgery,and how to protect the criss-crossing vascular neural network and pelvic organs is still the focus. Quadrilateral defect causes dislocation of artificial hip joint,and quantitative evaluation of quadrilateral defect volume and revision techniques are still a hot topic. In this paper,the viewpoints of three-dimensional network structure of acetabular pelvic vascular anatomy,anatomical surgical target channel and fixation anchor point of acetabular fracture reduction are proposed to design new techniques for accurate and minimally invasive surgical operations,in order to realize the requirements of rapid orthopedic rehabilitation.


Assuntos
Fraturas Ósseas , Fraturas do Quadril , Fraturas da Coluna Vertebral , Humanos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Acetábulo/cirurgia , Acetábulo/lesões , Fraturas do Quadril/cirurgia , Placas Ósseas
2.
Psych J ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530878

RESUMO

Empirical research using the Empathic Accuracy Task (EAT) has suggested that schizophrenia patients and people with schizotypal personality disorder exhibit lower empathic accuracy than healthy people. However, empathic accuracy in a subclinical sample with high levels of schizotypy has seldom been studied. Our study aimed to investigate empathy in a subclinical sample using the Chinese version of the EAT and a self-report empathy measure. Forty participants with high levels of schizotypy (HS participants) and 40 with low levels of schizotypy (LS participants), as measured by the Schizotypal Personality Questionnaire (SPQ), were recruited. All participants completed the Chinese version of the EAT and the self-report Questionnaire of Cognitive and Affective Empathy. Empathic accuracy (EA) scores and the intra-individual variability of EA scores were calculated. Independent samples t tests and Pearson correlation analyses were performed to examine group differences in empathy and the relationship between empathy and schizotypy respectively. HS participants exhibited reduced EA for both positive and negative videos, and larger intra-individual variability of EA for negative videos than LS participants. However, HS and LS participants did not differ in self-report cognitive empathy. Moreover, the interpersonal dimension of the SPQ was negatively correlated with EAT performance and self-report cognitive empathy in LS participants. Individuals with HS show poorer performance-based EA but relatively intact self-report cognitive empathy. This study provides empirical evidence for the ontogeny of empathy deficits in subclinical populations at risk of developing schizophrenia, supporting early interventions for social cognitive deficits.

3.
Chem Sci ; 15(29): 11302-11310, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055028

RESUMO

High-voltage LiNi0.5Mn1.5O4 (LNMO) is one of the most promising cathode candidates for rechargeable lithium-ion batteries (LIBs) but suffers from deteriorated cycling stability due to severe interfacial side reactions and manganese dissolution. Herein, a micro-nano porous spherical LNMO cathode was designed for high-performance LIBs. The disordered structure and the preferred exposure of the {111} facets can be controlled by the release of lattice oxygen in the high-temperature calcination process. The unique configuration of this material could enhance the structural stability and play a crucial role in inhibiting manganese dissolution, promoting the rapid transport of Li+, and reducing the volume strain during the charge/discharge process. The designed cathode exhibits a remarkable discharge capacity of 136.7 mA h g-1 at 0.5C, corresponding to an energy density of up to 636.4 W h kg-1, unprecedented cycling stability (capacity retention of 90.6% after 500 cycles) and superior rate capability (78.9% of initial capacity at 10C). The structurally controllable preparation strategy demonstrated in this work provides new insights into the structural design of cathode materials for LIBs.

4.
Chem Sci ; 15(14): 5192-5200, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577355

RESUMO

Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials.

5.
Front Pharmacol ; 14: 1291194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249348

RESUMO

Introduction: Carnosol exhibited ameliorating effects on muscle atrophy of mice developed cancer cachexia in our previous research. Method: Here, the ameliorating effects of carnosol on the C2C12 myotube atrophy result from simulated cancer cachexia injury, the conditioned medium of the C26 tumor cells or the LLC tumor cells, were observed. To clarify the mechanisms of carnosol, the possible direct target proteins of carnosol were searched using DARTS (drug affinity responsive target stability) assay and then confirmed using CETSA (cellular thermal shift assay). Furthermore, proteomic analysis was used to search its possible indirect target proteins by comparing the protein expression profiles of C2C12 myotubes under treatment of C26 medium, with or without the presence of carnosol. The signal network between the direct and indirect target proteins of carnosol was then constructed. Results: Our results showed that, Delta-1-pyrroline-5-carboxylate synthase (P5CS) might be the direct target protein of carnosol in myotubes. The influence of carnosol on amino acid metabolism downstream of P5CS was confirmed. Carnosol could upregulate the expression of proteins related to glutathione metabolism, anti-oxidant system, and heat shock response. Knockdown of P5CS could also ameliorate myotube atrophy and further enhance the ameliorating effects of carnosol. Discussion: These results suggested that carnosol might ameliorate cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA