Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(28): 10830-10840, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37401810

RESUMO

Bigeye tuna (BET, Thunnus obesus) is one of the most nutritious and luxurious cosmopolitan fish. The cooked BET products are capturing the interests of consumers by enhancing flavor and ensuring microbiological safety; however, the lipidomic fingerprints during daily cooking processes have not been investigated. In this work, lipid phenotypic data variation in BET during air-frying, roasting, and boiling was studied comprehensively using iKnife rapid evaporative ionization mass spectrometry (REIMS). The outstanding lipid ions mainly including fatty acids (FAs) and phospholipids (PLs) were identified structurally. It was demonstrated that the rates of heat transfer and lipid oxidation in air-fried BET were slower than those in roasted and boiled BET by elucidating the lipid oxidation and PL hydrolysis mechanism. Furthermore, multivariate REIMS data analysis (e.g., discriminant analysis, support vector machine, neutral network, and machine learning models) was used to characterize the lipid profile change in different cooked BET samples, among which FAC22:6, PL18:3/22:6, PL18:1/22:6, and others were the salient contributing features for determining the cooked BET samples. These results may provide a potential strategy for a healthy diet by controlling and improving functional food quality in daily cooking.


Assuntos
Fosfolipídeos , Atum , Animais , Espectrometria de Massas , Peixes , Culinária
2.
Int J Biol Macromol ; 237: 124193, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990418

RESUMO

Plasmalogens (Pls) as the hydrophobic bioactive compound have shown potential in enhancing neurological disorders. However, the bioavailability of Pls is limited because of their poor water solubility during digestion. Herein, the hollow dextran sulfate/chitosan - coated zein nanoparticles (NPs) loaded with Pls was prepared. Subsequently, a novel in situ monitoring method utilizing rapid evaporative ionization mass spectrometry (REIMS) coupled with electric soldering iron ionization (ESII) was proposed to assess the lipidomic fingerprint alteration of Pls-loaded zein NPs during in vitro multiple-stage digestion in real time. A total of 22 Pls in NPs were structurally characterized and quantitatively analyzed, and the lipidomic phenotypes at each digestion stage were evaluated by multivariate data analysis. During multiple-stage digestion, Pls were hydrolyzed to lyso-Pls and free fatty acids by phospholipases A2, while the vinyl ether bond was retained at the sn-1 position. The result revealed that the contents of Pls groups were significantly reduced (p < 0.05). The multivariate data analysis results indicated that the ions at m/z 748.28, m/z 750.69, m/z 774.38, m/z 836.58, and etc. were the significant candidate contributors for monitoring the variation of Pls fingerprints during digestion. Results demonstrated that the proposed method exhibited potential for real-time tracking the lipidomic characteristics of nutritional lipid NPs digestion in the human gastrointestinal tract.


Assuntos
Nanopartículas , Zeína , Humanos , Plasmalogênios , Lipidômica/métodos , Espectrometria de Massas/métodos , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA