Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968106

RESUMO

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Assuntos
Proteínas de Bactérias , Cobre , Haemophilus influenzae , Oxazolona , Fatores de Virulência , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Cobre/metabolismo , Cobre/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Ferro/metabolismo , Processamento de Proteína Pós-Traducional , Oxirredutases/metabolismo , Oxirredutases/genética , Óperon , Cisteína/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(46): e2406198121, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39503886

RESUMO

The maturation and installation of the active site metal cluster (FeMo-co, Fe7S9CMo-R-homocitrate) in Mo-dependent nitrogenase requires the protein product of the nifB gene for production of the FeS cluster precursor (NifB-co, [Fe8S9C]) and the action of the maturase complex composed of the protein products from the nifE and nifN genes. However, some putative diazotrophic bacteria, like Roseiflexus sp. RS-1, lack the nifEN genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN. In this study, the Roseiflexus NifH, NifB, and apo-NifDK proteins produced in Escherichia coli are shown to be sufficient for FeMo-co maturation and insertion into the NifDK protein to achieve active nitrogenase. The E. coli expressed NifDKRS contained P-clusters but was devoid of FeMo-co (referred to as apo-NifDKRS). Apo-NifDKRS could be activated for N2 reduction by addition of preformed FeMo-co. Further, it was found that apo-NifDKRS plus E. coli produced NifBRS and NifHRS were sufficient to yield active NifDKRS when incubated with the necessary substrates (homocitrate, molybdate, and S-adenosylmethionine [SAM]), demonstrating that these proteins can replace the need for NifEN in maturation of Mo-nitrogenase. The E. coli produced NifHRS and NifBRS proteins were independently shown to be functional. The reconstituted NifDKRS demonstrated reduction of N2, protons, and acetylene in ratios observed for Azotobacter vinelandii NifDK. These findings reveal a distinct NifEN-independent pathway for nitrogenase activation involving NifHRS, NifBRS, and apo-NifDKRS.


Assuntos
Proteínas de Bactérias , Coenzimas , Nitrogenase , Nitrogenase/metabolismo , Nitrogenase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzimas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Molibdoferredoxina/metabolismo , Metaloproteínas/metabolismo , Metaloproteínas/genética , Pteridinas/metabolismo , Azotobacter vinelandii/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/enzimologia , Cofatores de Molibdênio
3.
J Biol Chem ; : 107900, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39442618

RESUMO

The Azotobacter vinelandii molybdenum nitrogenase obtains molybdenum from NifQ, a monomeric iron-sulfur molybdoprotein. This protein requires an existing [Fe-S] cluster to form a [Mo-Fe3-S4] group, which acts as specific molybdenum donor during nitrogenase FeMo-co biosynthesis. Here, we show biochemical evidence supporting the role of NifU as the [Fe-S] cluster donor. Protein-protein interaction studies involving apo-NifQ and as-isolated NifU demonstrated their interaction, which was only effective when NifQ lacked its [Fe-S] cluster. Incubation of apo-NifQ with [Fe4-S4]-loaded NifU increased the iron content of the former, contingent to both proteins being able to interact with one another. As a result of this interaction, a [Fe4-S4] cluster was transferred from NifU to NifQ. In A. vinelandii , NifQ was preferentially metalated by NifU rather than by the [Fe-S] cluster scaffold protein IscU. These results indicate the necessity of co-expressing NifU and NifQ to efficiently provide molybdenum for FeMo-co biosynthesis when engineering nitrogenase in plants.

4.
Proc Natl Acad Sci U S A ; 119(39): e2210908119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122239

RESUMO

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Šfrom the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Oxigenases , Tirosina , para-Aminobenzoatos , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , Ácido Fólico , Ferro/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Tirosina/metabolismo , para-Aminobenzoatos/metabolismo
5.
Biochemistry ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39471288

RESUMO

Chlamydia protein associating with death domains (CtCADD) is involved in the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe2 cofactor, previous activity studies have shown that CtCADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe2+/Mn2+ cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an in crystallo metalation approach, CtCADD was solved in the apo, Fe2+2, Mn2+2, and catalytically active Fe2+/Mn2+ forms to identify the probable site for Mn binding. The analysis of CtCADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn3+/Fe3+ cluster.

6.
Biochemistry ; 63(12): 1588-1598, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38817151

RESUMO

Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Methanosarcina/enzimologia , Methanosarcina/genética , Ferredoxinas/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Oxirredução , Modelos Moleculares , Tiorredoxinas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Espectroscopia de Ressonância de Spin Eletrônica
7.
J Am Chem Soc ; 146(6): 3796-3804, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299607

RESUMO

S = 2 FeIV═O centers generated in the active sites of nonheme iron oxygenases cleave substrate C-H bonds at rates significantly faster than most known synthetic FeIV═O complexes. Unlike the majority of the latter, which are S = 1 complexes, [FeIV(O)(tris(2-quinolylmethyl)amine)(MeCN)]2+ (3) is a rare example of a synthetic S = 2 FeIV═O complex that cleaves C-H bonds 1000-fold faster than the related [FeIV(O)(tris(pyridyl-2-methyl)amine)(MeCN)]2+ complex (0). To rationalize this significant difference, a systematic comparison of properties has been carried out on 0 and 3 as well as related complexes 1 and 2 with mixed pyridine (Py)/quinoline (Q) ligation. Interestingly, 2 with a 2-Q-1-Py donor combination cleaves C-H bonds at 233 K with rates approaching those of 3, even though Mössbauer analysis reveals 2 to be S = 1 at 4 K. At 233 K however, 2 becomes S = 2, as shown by its 1H NMR spectrum. These results demonstrate a unique temperature-dependent spin-state transition from triplet to quintet in oxoiron(IV) chemistry that gives rise to the high C-H bond cleaving reactivity observed for 2.

8.
Chembiochem ; : e202400307, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900645

RESUMO

Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S=2 oxyferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S=1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S=2 Fe(IV)-oxo intermediates, the discovery of the first S=1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S=2 and the S=1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S=1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.

9.
Angew Chem Int Ed Engl ; 63(3): e202316378, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997195

RESUMO

Lewis acid-bound high valent Mn-oxo species are of great importance due to their relevance to photosystem II. Here, we report the synthesis of a unique [(BnTPEN)Mn(III)-O-Ce(IV)(NO3 )4 ]+ adduct (2) by the reaction of (BnTPEN)Mn(II) (1) with 4 eq. ceric ammonium nitrate. 2 has been characterized using UV/Vis, NMR, resonance Raman spectroscopy, as well as by mass spectrometry. Treatment of 2 with Sc(III)(OTf)3 results in the formation of (BnTPEN)Mn(IV)-O-Sc(III) (3), while HClO4 addition to 2 forms (BnTPEN)Mn(IV)-OH (4), reverting to 2 upon Ce(III)(NO3 )3 addition. 2 can also be prepared by the oxidation of 1 eq. Ce(III)(NO3 )3 with [(BnTPEN)Mn(IV)=O]2+ (5). In addition, the EPR spectroscopy revealed the elegant temperature-dependent equilibria between 2 and Mn(IV) species. The binding of redox-active Ce(IV) boosts electron transfer efficiency of 2 towards ferrocenes. Remarkably, the newly characterized Mn(III)-O-Ce(IV) species can carry out O-atom and H-atom transfer reactions.

10.
Angew Chem Int Ed Engl ; 63(1): e202315844, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37963815

RESUMO

Valanimycin is an azoxy-containing natural product isolated from the fermentation broth of Streptomyces viridifaciens MG456-hF10. While the biosynthesis of valanimycin has been partially characterized, how the azoxy group is constructed remains obscure. Herein, the membrane protein VlmO and the putative hydrazine synthetase ForJ from the formycin biosynthetic pathway are demonstrated to catalyze N-N bond formation converting O-(l-seryl)-isobutyl hydroxylamine into N-(isobutylamino)-l-serine. Subsequent installation of the azoxy group is shown to be catalyzed by the non-heme diiron enzyme VlmB in a reaction in which the N-N single bond in the VlmO/ForJ product is oxidized by four electrons to yield the azoxy group. The catalytic cycle of VlmB appears to begin with a resting µ-oxo diferric complex in VlmB, as supported by Mössbauer spectroscopy. This study also identifies N-(isobutylamino)-d-serine as an alternative substrate for VlmB leading to two azoxy regioisomers. The reactions catalyzed by the kinase VlmJ and the lyase VlmK during the final steps of valanimycin biosynthesis are established as well. The biosynthesis of valanimycin was thus fully reconstituted in vitro using the enzymes VlmO/ForJ, VlmB, VlmJ and VlmK. Importantly, the VlmB-catalyzed reaction represents the first example of enzyme-catalyzed azoxy formation and is expected to proceed by an atypical mechanism.


Assuntos
Compostos Azo , Compostos Azo/química
11.
J Am Chem Soc ; 145(4): 2690-2697, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689463

RESUMO

Aliphatic alkylamines are abundant feedstock and versatile building blocks for many organic transformations. While remarkable progress has been made to construct C-N bonds on aliphatic and aromatic carbon centers, the activation and functionalization of C(sp3)-NH2 bonds in primary alkylamines remain a challenging process. In the present work, we discovered an unprecedented method to directly activate the C(sp3)-NH2 bond of primary alkylamines by a high-valent dinuclear CoIII,IV2(µ-O)2 diamond core complex. This reaction results in the installation of other functional groups such as halides and alkenes onto the α-carbon center concomitant with the 2-e- oxidation of the nitrogen atom on the amino group to form NH2OH. These results shed light on future development enabling versatile functionalization of primary alkylamines based on the dinuclear cobalt system. Moreover, our work suggests that a related high-valent copper-oxo intermediate is likely generated in the ammonia monooxygenase catalytic cycle to affect the oxidation of NH3 to NH2OH.

12.
J Am Chem Soc ; 145(11): 6240-6246, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913534

RESUMO

Aziridines are compounds with a nitrogen-containing three-membered ring. When it is incorporated into natural products, the reactivity of the strained ring often drives the biological activities of aziridines. Despite its importance, the enzymes and biosynthetic strategies deployed to install this reactive moiety remain understudied. Herein, we report the use of in silico methods to identify enzymes with potential aziridine-installing (aziridinase) functionality. To validate candidates, we reconstitute enzymatic activity in vitro and demonstrate that an iron(IV)-oxo species initiates aziridine ring closure by the C-H bond cleavage. Furthermore, we divert the reaction pathway from aziridination to hydroxylation using mechanistic probes. This observation, isotope tracing experiments using H218O and 18O2, and quantitative product analysis, provide evidence for the polar capture of a carbocation species by the amine in the pathway to aziridine installation.


Assuntos
Aziridinas , Ferro , Ferro/química , Hidroxilação , Catálise
13.
J Am Chem Soc ; 145(8): 4389-4393, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795537

RESUMO

The nature of reactive intermediates and the mechanism of the cis-dihydroxylation of arenes and olefins by Rieske dioxygenases and synthetic nonheme iron catalysts have been the topic of intense research over the past several decades. In this study, we report that a spectroscopically well characterized mononuclear nonheme iron(III)-peroxo complex reacts with olefins and naphthalene derivatives, yielding iron(III) cycloadducts that are isolated and characterized structurally and spectroscopically. Kinetics and product analysis reveal that the nonheme iron(III)-peroxo complex is a nucleophile that reacts with olefins and naphthalenes to yield cis-diol products. The present study reports the first example of the cis-dihydroxylation of substrates by a nonheme iron(III)-peroxo complex that yields cis-diol products.


Assuntos
Dioxigenases , Ferro/química , Catálise , Alcenos/química
14.
J Am Chem Soc ; 145(25): 13696-13708, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306669

RESUMO

The Wood-Ljungdahl Pathway is a unique biological mechanism of carbon dioxide and carbon monoxide fixation proposed to operate through nickel-based organometallic intermediates. The most unusual steps in this metabolic cycle involve a complex of two distinct nickel-iron-sulfur proteins: CO dehydrogenase and acetyl-CoA synthase (CODH/ACS). Here, we describe the nickel-methyl and nickel-acetyl intermediates in ACS completing the characterization of all its proposed organometallic intermediates. A single nickel site (Nip) within the A cluster of ACS undergoes major geometric and redox changes as it transits the planar Nip, tetrahedral Nip-CO and planar Nip-Me and Nip-Ac intermediates. We propose that the Nip intermediates equilibrate among different redox states, driven by an electrochemical-chemical (EC) coupling process, and that geometric changes in the A-cluster linked to large protein conformational changes control entry of CO and the methyl group.


Assuntos
Proteínas Ferro-Enxofre , Níquel , Acetilcoenzima A/química , Níquel/química , Dióxido de Carbono/metabolismo , Anaerobiose , Proteínas Ferro-Enxofre/química , Óxido Nítrico Sintase/metabolismo , Aldeído Oxirredutases/metabolismo , Monóxido de Carbono/química
15.
J Am Chem Soc ; 145(44): 24210-24217, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874539

RESUMO

BelL and HrmJ are α-ketoglutarate-dependent nonheme iron enzymes that catalyze the oxidative cyclization of 6-nitronorleucine, resulting in the formation of two diastereomeric 3-(2-nitrocyclopropyl)alanine (Ncpa) products containing trans-cyclopropane rings with (1'R,2'R) and (1'S,2'S) configurations, respectively. Herein, we investigate the catalytic mechanism and stereodivergency of the cyclopropanases. The results suggest that the nitroalkane moiety of the substrate is first deprotonated to produce the nitronate form. Spectroscopic analyses and biochemical assays with substrates and analogues indicate that an iron(IV)-oxo species abstracts proS-H from C4 to initiate intramolecular C-C bond formation. A hydroxylation intermediate is unlikely to be involved in the cyclopropanation reaction. Additionally, a genome mining approach is employed to discover new homologues that perform the cyclopropanation of 6-nitronorleucine to generate cis-configured Ncpa products with (1'R,2'S) or (1'S,2'R) stereochemistries. Sequence and structure comparisons of these cyclopropanases enable us to determine the amino acid residues critical for controlling the stereoselectivity of cyclopropanation.


Assuntos
Aminocaproatos , Estereoisomerismo , Oxirredução
16.
Inorg Chem ; 62(28): 11121-11133, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37390479

RESUMO

The complexes [FeIII(HMC)(C2DMA)2]CF3SO3 ([2]OTf) and [FeIII(HMTI)(C2Y)2]CF3SO3 ([3a-c]OTf) have been prepared and thoroughly characterized (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; HMTI = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene; Y = Fc (ferrocenyl, [3a]OTf), 4-(N,N-dimethyl)anilino (DMA, [3b]OTf), or 4-(N,N-bis(4-methoxyphenyl)anilino (TPA, [3c]OTf); OTf- = CF3SO3-)). Vibrational and electronic absorption spectroelectrochemical analyses following one-electron oxidation of the ethynyl substituent Y revealed evidence of strong coupling in the resultant mixed valent species for all HMTI-based complexes. However, the analogous mixed valent ion based on [2]OTf appeared to be more localized. Thus, the tetra-imino macrocycle HMTI has enabled significant valence delocalization along the -C2-FeIII-C2- bridge. Electron paramagnetic resonance and Mössbauer spectroscopic studies of [3b]OTf reveal that the π-acidity of HMTI lowers the energy of the FeIII dπ orbitals compared to the purely σ-donating HMC. This observation provides a basis for the interpretation of the macrocycle-dependent valence (de)localization.

17.
Inorg Chem ; 62(41): 16842-16853, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37788376

RESUMO

The salt [K(18-crown-6)]2[Ru(CN)2(CO)3] ([K(18-crown-6)]2[1]) was generated by the reaction of Ru(C2H4)(CO)4 with [K(18-crown-6)]CN. An initial thermal reaction gives [Ru(CN)(CO)4]-, which, upon ultraviolet (UV) irradiation, reacts with a second equiv of CN-. Protonation of [1]2- gave [HRu(CN)2(CO)3]- ([H1]-), which was isolated as a single isomer with mutually trans cyanide ligands. The complex cis,cis,cis-[Ru(pdt)(CN)2(CO)2]2- ([2]2-) was prepared by the UV-induced reaction of [1]2- with propanedithiol (pdtH2). The corresponding iron complex cis,cis,cis-[Fe(pdt)(CN)2(CO)2]2- ([3]2-) was prepared similarly. The pdt complexes [2]2- and [3]2- were treated with Fe(benzylideneacetone)(CO)3 to give, respectively, [RuFe (µ-pdt)(CN)2(CO)4]2- ([5]2-) and [Fe2(µ-pdt)(CN)2(CO)4]2- ([4]2-). The pathway from [3]2- to Fe2 complex [4]2- implicates intermetallic migration of CN-. In contrast, the formation of [5]2- leaves the Ru(CN)2(CO) center intact, as confirmed by X-ray crystallography. The structure of [5]2- features a "rotated" square-pyramidal Fe(CO)2(µ-CO) site. NMR measurements indicate that the octahedral Ru site is stereochemically rigid, whereas the Fe site dynamically undergoes turnstile rotation. 57Fe Mössbauer spectral parameters are very similar for rotated [5]2- and unrotated Fe2 complex [4]2-, indicating the insensitivity of that technique to both the geometry and the oxidation state of the Fe site. According to cyclic voltammetry, [5]2- oxidizes at E1/2 ∼ -0.8 V vs Fc+/0. Electron paramagnetic resonance (EPR) measurements show that 1e- oxidation of [5]2- gives an S = 1/2 rhombic species, consistent with the formulation Ru(II)Fe(I), related to the Hox state of the [FeFe] hydrogenases. Density functional theory (DFT) studies reproduce the structure, 1H NMR shifts, and infrared (IR) spectra observed for [5]2-. Related homometallic complexes with both cyanides on a single metal are predicted to not adopt rotated structures. These data suggest that [5]2- is best described as Ru(II)Fe(0). This conclusion raises the possibility that for some reduced states of the [FeFe]-hydrogenases, the [2Fe]H site may be better described as Fe(II)Fe(0) than Fe(I)Fe(I).

18.
Angew Chem Int Ed Engl ; 62(46): e202313006, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37751302

RESUMO

Isoporphyrins have recently been identified as remarkable species capable of turning the nucleophile attached to the porphyrin ring into an electrophile, thereby providing umpolung of reactivity (Inorg. Chem. 2022, 61, 8105-8111). They are generated by nucleophilic attack on an iron(III) π-dication, a class of species that has received scant attention. Here, we explore the effect of the porphyrin meso-substituent and report a iron(III) π-dication bearing the meso-tetraphenylporphyrin (TPP) ligand. We provide an extensive study of the species by UV/Vis absorption, 2 H NMR, EPR, applied field Mössbauer, and resonance Raman spectroscopy. We further explore the system's highly dynamic and tunable properties and address the nature of the axial ligands as well as the conformation of the porphyrin ring. The insights presented are essential for the rational design of catalysts for the umpolung of nucleophiles. Such catalytic avenues could for example provide a novel method for electrophilic chlorinations. We further examine the importance of electronic tuning of the porphyrin by nature of the meso-substituent as a factor in catalyst design.

19.
Angew Chem Int Ed Engl ; 62(41): e202311099, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37639670

RESUMO

Mononuclear nonheme iron(II) and 2-oxoglutarate (Fe/2OG)-dependent oxygenases and halogenases are known to catalyze a diverse set of oxidative reactions, including hydroxylation, halogenation, epoxidation, and desaturation in primary metabolism and natural product maturation. However, their use in abiotic transformations has mainly been limited to C-H oxidation. Herein, we show that various enzymes of this family, when reconstituted with Fe(II) or Fe(III), can catalyze Mukaiyama hydration-a redox neutral transformation. Distinct from the native reactions of the Fe/2OG enzymes, wherein oxygen atom transfer (OAT) catalyzed by an iron-oxo species is involved, this nonnative transformation proceeds through a hydrogen atom transfer (HAT) pathway in a 2OG-independent manner. Additionally, in contrast to conventional inorganic catalysts, wherein a dinuclear iron species is responsible for HAT, the Fe/2OG enzymes exploit a mononuclear iron center to support this reaction. Collectively, our work demonstrates that Fe/2OG enzymes have utility in catalysis beyond the current scope of catalytic oxidation.


Assuntos
Ferro , Oxigenases , Oxigenases/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxirredução , Catálise , Hidrogênio
20.
Angew Chem Int Ed Engl ; 62(43): e202309362, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37640689

RESUMO

Ergothioneine (ESH) and ovothiol A (OSHA) are two natural thiol-histidine derivatives. ESH has been implicated as a longevity vitamin and OSHA inhibits the proliferation of hepatocarcinoma. The key biosynthetic step of ESH and OSHA in the aerobic pathways is the O2 -dependent C-S bond formation catalyzed by non-heme iron enzymes (e.g., OvoA in ovothiol biosynthesis), but due to the lack of identification of key reactive intermediate the mechanism of this novel reaction is unresolved. In this study, we report the identification and characterization of a kinetically competent S=1 iron(IV) intermediate supported by a four-histidine ligand environment (three from the protein residues and one from the substrate) in enabling C-S bond formation in OvoA from Methyloversatilis thermotoleran, which represents the first experimentally observed intermediate spin iron(IV) species in non-heme iron enzymes. Results reported in this study thus set the stage to further dissect the mechanism of enzymatic oxidative C-S bond formation in the OSHA biosynthesis pathway. They also afford new opportunities to study the structure-function relationship of high-valent iron intermediates supported by a histidine rich ligand environment.


Assuntos
Histidina , Ferro , Histidina/metabolismo , Ligantes , Catálise , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA