Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 42(6): 700-716, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35354308

RESUMO

BACKGROUND: Clinical studies show that the most common single-point mutation in humans, ALDH2 (aldehyde dehydrogenase 2) rs671 mutation, is a risk factor for the development and poor prognosis of atherosclerotic cardiovascular diseases, but the underlying mechanism remains unclear. Apoptotic cells are phagocytosed and eliminated by macrophage efferocytosis during atherosclerosis, and enhancement of arterial macrophage efferocytosis reduces atherosclerosis development. METHODS: Plaque areas, necrotic core size, apoptosis, and efferocytosis in aortic lesions were investigated in APOE-/- mice with bone marrow transplanted from APOE-/-ALDH2-/- and APOE-/- mice. RNA-seq, proteomics, and immunoprecipitation experiments were used to screen and validate signaling pathways affected by ALDH2. Efferocytosis and protein levels were verified in human macrophages from wild-type and rs671 mutation populations. RESULTS: We found that transplanting bone marrow from APOE-/-ALDH2-/- to APOE-/- mice significantly increased atherosclerosis plaques compared with transplanting bone marrow from APOE-/- to APOE-/- mice. In addition to defective efferocytosis in plaques of APOE-/- mice bone marrow transplanted from APOE-/-ALDH2-/- mice in vivo, macrophages from ALDH2-/- mice also showed significantly impaired efferocytotic activity in vitro. Subsequent RNA-seq, proteomics, and immunoprecipitation experiments showed that wild-type ALDH2 directly interacted with Rac2 and attenuated its degradation due to decreasing the K48-linked polyubiquitination of lysine 123 in Rac2, whereas the rs671 mutant markedly destabilized Rac2. Furthermore, Rac2 played a more crucial role than other Rho GTPases in the internalization process in which Rac2 was up-regulated, activated, and clustered into dots. Overexpression of wild-type ALDH2 in ALDH2-/- macrophages, rather than the rs671 mutant, rescued Rac2 degradation and defective efferocytosis. More importantly, ALDH2 rs671 in human macrophages dampened the apoptotic cells induced upregulation of Rac2 and subsequent efferocytosis. CONCLUSIONS: Our study has uncovered a pivotal role of the ALDH2-Rac2 axis in mediating efferocytosis during atherosclerosis, highlighting a potential therapeutic strategy in cardiovascular diseases, especially for ALDH2 rs671 mutation carriers.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Proteínas rac de Ligação ao GTP/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Apolipoproteínas E/genética , Apoptose/fisiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Proteína RAC2 de Ligação ao GTP
2.
Gynecol Oncol ; 160(3): 704-712, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33357959

RESUMO

OBJECTIVE: To develop a novel diagnostic nomogram model to predict malignancy in patients with ovarian masses. METHODS: In total, 1277 patients with ovarian masses were retrospectively analyzed. Receiver operating characteristic (ROC) analysis was performed to identify valuable predictive factors. Univariate and multivariate logistic regression analyses were used to identify risk factors for ovarian cancer. Subsequently, a predictive nomogram model was developed. The performance of the nomogram model was assessed by its calibration and discrimination in a validation cohort. Decision curve analysis (DCA) was applied to assess the clinical net benefit of the model. RESULTS: Overall, 496 patients (38.8%) had ovarian cancer. Eighteen parameters were significantly different between the malignant and benign groups. Five parameters were identified as being most optimal for predicting malignancy, including age, carbohydrate antigen 125, fibrinogen-to-albumin ratio, monocyte-to-lymphocyte ratio, and ultrasound result. These parameters were incorporated to establish a nomogram model, and this model exhibited an area under the ROC curve (AUC) of 0.937 (95% confidence interval [CI], 0.920-0.954). The model was also well calibrated in the validation cohort and showed an AUC of 0.925 (95%CI, 0.896-0.953) at the cut-off point of 0.298. DCA confirmed that the nomogram model achieved the best clinical utility with almost the entire range of threshold probabilities. The model has demonstrated superior efficacy in predicting malignancy compared to currently available models, including the risk of ovarian malignancy algorithm, copenhagen index, and the risk of malignancy index. More importantly, the nomogram established here showed potential value in identification of early-stage ovarian cancer. CONCLUSION: The cost-effective and easily accessible nomogram model exhibited favorable accuracy for preoperative prediction of malignancy in patients with ovarian masses, even at early stages.


Assuntos
Neoplasias Ovarianas/diagnóstico por imagem , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Nomogramas , Período Pré-Operatório , Fatores de Risco
3.
J Immunol ; 203(8): 2049-2054, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31534008

RESUMO

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, catalyzes the formation of the second messenger 2'3'-cGAMP that binds to STING and triggers the type I IFN signaling. Activation of cGAS can be modulated by several protein posttranslational modifications, including ubiquitination. However, the cGAS activation regulated by protein deubiquitination remains poorly understood. In this study, we identified that deubiquitinase USP27X could interact with cGAS and cleave K48-linked polyubiquitination chains from cGAS, leading to cGAS stabilization. Consistently, knockout of Usp27x in mice macrophages resulted in an accelerated turnover of cGAS, decreased cGAMP production, phosphorylation of TBK1 and IRF3, and IFN-ß production. Furthermore, Usp27x knockout mice macrophages showed impaired innate antiviral responses against HSV type 1 infection. Our data suggest that USP27X is a novel regulator of the cGAS-STING cytosolic DNA sensing pathway.


Assuntos
Citosol/metabolismo , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células RAW 264.7 , Proteases Específicas de Ubiquitina/deficiência , Ubiquitinação
4.
Int J Med Sci ; 17(15): 2387-2395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922205

RESUMO

Chromodomain helicase DNA binding protein 1-like (CHD1L) gene has been proposed to play an oncogenic role in human hepatocellular carcinoma. Previously we reported that CHD1L overexpression is significantly associated with the metastasis proceeding of epithelial ovarian cancer (EOC), and may predict a poor prognosis in EOC patients. However, the potential oncogenic mechanisms by which CHD1L acts in EOC remain unclear. To elucidate the oncogenic function of CHD1L, we carried out a series of in vitro assays, with effects of CHD1L ectogenic overexpression and silencing being determined in EOC cell lines (HO8910, A2780 and ES2). Real-time PCR and Western blotting analyses were used to identify potential downstream targets of CHD1L in the process of EOC invasion and metastasis. In ovarian carcinoma HO8910 cell lines, ectopic overexpression of CHD1L substantially induced the invasive and metastasis ability of the cancer cells in vitro. In contrast, knockdown of CHD1L using shRNA inhibited cell invasion in vitro in ovarian carcinoma A2780 and ES2 cell lines. We also demonstrated that methionyl aminopeptidase 2 (METAP2) was a downstream target of CHD1L in EOC, and we found a significant, positive correlation between the expression of CHD1L and METAP2 in EOC tissues (P<0.05). Our findings indicate that CHD1L plays a potential role in the inducement of EOC cancer cell invasion and/or metastasis via the regulation of METAP2 expression and suggests that CHD1L inhibition may provide a potential target for therapeutic intervention in human EOC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metionil Aminopeptidases/genética , Neoplasias Ovarianas/genética , Biomarcadores Tumorais/genética , Carcinoma Epitelial do Ovário/mortalidade , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/cirurgia , Linhagem Celular Tumoral , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/cirurgia , Ovariectomia , Ovário/patologia , Ovário/cirurgia , Análise Serial de Tecidos , Regulação para Cima
5.
J Neurosci ; 37(25): 5978-5995, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28500221

RESUMO

Multiple studies have established that brain-derived neurotrophic factor (BDNF) plays a critical role in the regulation of synaptic plasticity via its receptor, TrkB. In addition to being phosphorylated, TrkB has also been demonstrated to be ubiquitinated. However, the mechanisms of TrkB ubiquitination and its biological functions remain poorly understood. In this study, we demonstrate that ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes contextual fear conditioning learning and memory via the regulation of ubiquitination of TrkB. We provide evidence that UCH-L1 can deubiquitinate TrkB directly. K460 in the juxtamembane domain of TrkB is the primary ubiquitination site and is regulated by UCH-L1. By using a peptide that competitively inhibits the association between UCH-L1 and TrkB, we show that the blockade of UCH-L1-regulated TrkB deubiquitination leads to increased BDNF-induced TrkB internalization and consequently directs the internalized TrkB to the degradation pathway, resulting in increased degradation of surface TrkB and attenuation of TrkB activation and its downstream signaling pathways. Moreover, injection of the peptide into the DG region of mice impairs hippocampus-dependent memory. Together, our results suggest that the ubiquitination of TrkB is a mechanism that controls its downstream signaling pathways via the regulation of its endocytosis and postendocytic trafficking and that UCH-L1 mediates the deubiquitination of TrkB and could be a potential target for the modulation of hippocampus-dependent memory.SIGNIFICANCE STATEMENT Ubiquitin C-terminal hydrolase L1 (UCH-L1) has been demonstrated to play important roles in the regulation of synaptic plasticity and learning and memory. TrkB, the receptor for brain-derived neurotrophic factor, has also been shown to be a potent regulator of synaptic plasticity. In this study, we demonstrate that UCH-L1 functions as a deubiquitinase for TrkB. The blockage of UCH-L1-regulated deubiquitination of TrkB eventually results in the increased degradation of surface TrkB and decreased activation of TrkB and its downstream signaling pathways. In vivo, UCH-L1-regulated TrkB deubiquitination is necessary for hippocampus-dependent memory. Overall, our study provides novel insights into the mechanisms of UCH-L1-mediated neurobiological functions and suggests that ubiquitination is an important regulatory signal for TrkB functions.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Receptor trkB/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação/fisiologia , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Condicionamento Operante/fisiologia , Endocitose/genética , Endocitose/fisiologia , Medo/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Atividade Motora/fisiologia , Neurônios/metabolismo , Receptor trkB/antagonistas & inibidores , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitina Tiolesterase/genética , Ubiquitinação/genética
6.
Cell Mol Life Sci ; 74(21): 4027-4044, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28638935

RESUMO

Long-range anterograde axonal transport of TrkB is important for neurons to exert appropriate BDNF responses. TrkB anterograde axonal delivery is mediated by kinesin-1, which associates with TrkB via the adaptor protein JIP3 or the Slp1/Rab27B/CRMP-2 protein complex. However, little is known about the activation mechanisms of TrkB-loaded kinesin-1. Here, we show that JIP1 mediates TrkB anterograde axonal transport using JIP1 knockout mice, sciatic nerve ligation analysis and live imaging. Next, we proved that JIP1 and JIP3 cooperate to mediate TrkB anterograde axonal transport. Finally, microtubule-binding and microfluidic chamber assays revealed that JIP1 and JIP3 cooperate to relieve kinesin-1 autoinhibition, which depends on the binding of JIP1 to kinesin-1 heavy chain (KHC) and light chain (KLC) and the binding of JIP3 to KLC and is essential for TrkB anterograde axonal transport and BDNF-induced TrkB retrograde signal. These findings could deepen our understanding of the regulation mechanism underlying TrkB anterograde axonal transport and provide a novel kinesin-1 autoinhibition-relieving model.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Transporte Axonal/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Receptor trkB/metabolismo , Animais , Retroalimentação Fisiológica , Feminino , Cinesinas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Ratos Sprague-Dawley , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo
7.
Tohoku J Exp Med ; 245(3): 141-148, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29962380

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy with high recurrence and poor prognosis duo to the lack of effective biomarkers. TBC1 domain family member 16 (TBC1D16), a GTPase-activating protein, is involved in regulating intracellular trafficking in tumorigenesis and metastasis. However, the clinical significance of TBC1D16 in EOC remains unknown. In the present study, we investigated the expression and prognostic significance of TBC1D16 in EOC and its relationship with the expression of vascular endothelial growth factor (VEGF). The tissue specimens included 156 histologically confirmed EOC and 30 normal ovarian tissues. The expression of TBC1D16 and VEGF was detected by immunohistochemistry (IHC), and the immunoreactive score was calculated with signal intensity and percentage of positive cells. IHC results showed that TBC1D16 and VEGF were both mainly localized in cytoplasm of epithelial cells in normal ovarian tissues and were expressed in cancer cells. Based on the immunoreactive score, TBC1D16 expression in EOC was categorized as "high expression," compared with normal ovarian tissues (P < 0.05). The Chi-square test showed that high TBC1D16 expression was related to advanced pT stages (P = 0.029), but not correlated with other clinical features. Moreover, the TBC1D16 expression was significantly higher in EOC specimens with low VEGF expression (P < 0.001). Importantly, in both univariate and multivariate survival analyses, high expression of TBC1D16 was significantly correlated with good overall survival (OS). In conclusion, TBC1D16 is a predictive marker for favorable prognosis of EOC.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Carcinoma Epitelial do Ovário , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Neurochem ; 135(3): 453-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303065

RESUMO

Brain-derived neurotrophic factor (BDNF) has been implicated in the potent modulation of synaptic plasticity at both pre-synaptic and post-synaptic sites. However, the molecular mechanism underlying BDNF-mediated pre-synaptic modulation remains incompletely understood. Here, we report that BDNF treatment for over 4 h could significantly enhance the expression of c-Jun NH2-terminal kinase-interacting protein 3 (JIP3) in cultured hippocampal neurons. This enhancement could be blocked by the Trk inhibitor K252a or by a cAMP response element-binding protein (CREB) inhibitor. In addition, chromatin immunoprecipitation (ChIP) assays revealed that CREB could bind with the JIP3 promoter region and the BDNF treatment could increase this binding. Using dual-luciferase assays we further characterized the cAMP response element (CRE) site in the JIP3 promoter. Finally, we found that BDNF-increased JIP3 expression contributes to the BDNF-induced modulation of neurotransmitter release. Together, our studies reveal that in hippocampal neurons BDNF up-regulates JIP3 expression via CREB activation, which contributes to the enhancement of neurotransmitter release; thus, we have identified a novel mechanism that BDNF modulates pre-synaptic transmission.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína Quinase 10 Ativada por Mitógeno/biossíntese , Regulação para Cima/fisiologia , Animais , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
9.
Asian-Australas J Anim Sci ; 28(12): 1703-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26580437

RESUMO

The in vitro maturation (IVM) efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+) oocytes with low glucose-6-phosphate dehydrogenase (G6PDH) activity have shown superior quality than BCB negative (-) oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG) migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9) and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB- oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

10.
J Econ Entomol ; 107(2): 806-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772564

RESUMO

The wide application of chlorantraniliprole, which selectively targets insect ryanodine receptors (RyR), for control of the diamondback moth, Plutella xylostella (L.), has led to increasingly prominent development of resistance to this insecticide. Although much work has been carried out on the structure and function of RyR, the molecular mechanisms of resistance to chlorantraniliprole in diamondback moth still needs further investigation. P. xylostella strains with medium and high resistance to chlorantraniliprole were obtained by laboratory selection and field collection. The biological activity of chlorantraniliprole against the third-instar larvae of susceptible and resistant strains was tested, and resistance development and biological fitness were investigated. The realized heritability (h2) of resistance showed the diamondback moth has a high risk of resistance to chlorantraniliprole. RyR transcript levels were lower in resistant strains than in susceptible strains, indicating that decreased expression of PxRyR may be associated with chlorantraniliprole resistance in P. xylostella. A 4,400 bp fragment of the RyR cDNA, which encodes most of the functional domains of RyR, was cloned and characterized from four strains (S, F18, BY, and ZC). A 14 amino acid (Q4546-S4559) deletion was found in three resistant strains (F18, BY, and ZC). A point mutation resulting in a glycine to glutamate substitution, as reported in a previously published article, was also found in the carboxyl-terminal region of two resistant strains (BY and ZC). These results indicated that decreased transcriptional level of RyR mRNA and combined with the site mutation might be related to chlorantraniliprole resistance in P. xylostella.


Assuntos
Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ortoaminobenzoatos/farmacologia , Administração Tópica , Sequência de Aminoácidos , Animais , China , Clonagem Molecular , DNA Complementar , Regulação da Expressão Gênica , Aptidão Genética , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Tábuas de Vida , Dados de Sequência Molecular , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Medição de Risco , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Alinhamento de Sequência
11.
Life Metab ; 3(4)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38911968

RESUMO

Histone methylation plays a crucial role in tumorigenesis. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that regulates chromatin structure and gene expression. EZH2 inhibitors (EZH2is) have been shown to be effective in treating hematologic malignancies, while their effectiveness in solid tumors remains limited. One of the major challenges in the treatment of solid tumors is their hypoxic tumor microenvironment. Hypoxia-inducible factor 1-alpha (HIF-1α) is a key hypoxia responder that interacts with EZH2 to promote tumor progression. Here we discuss the implications of the relationship between EZH2 and hypoxia for expanding the application of EZH2is in solid tumors.

12.
EBioMedicine ; 100: 104972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244292

RESUMO

The importance of EZH2 as a key methyltransferase has been well documented theoretically. Practically, the first EZH2 inhibitor Tazemetostat (EPZ6438), was approved by FDA in 2020 and is used in clinic. However, for most solid tumors it is not as effective as desired and the scope of clinical indications is limited, suggesting that targeting its enzymatic activity may not be sufficient. Recent technologies focusing on the degradation of EZH2 protein have drawn attention due to their potential robust effects. This review focuses on the molecular mechanisms that regulate EZH2 protein stability via post-translational modifications (PTMs), mainly including ubiquitination, phosphorylation, and acetylation. In addition, we discuss recent advancements of multiple proteolysis targeting chimeras (PROTACs) strategies and the latest degraders that can downregulate EZH2 protein. We aim to highlight future directions to expand the application of novel EZH2 inhibitors by targeting both EZH2 enzymatic activity and protein stability.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Carcinogênese/genética , Neoplasias/genética , Neoplasias/metabolismo , Transformação Celular Neoplásica , Inibidores Enzimáticos , Estabilidade Proteica
13.
Adv Sci (Weinh) ; 11(23): e2308045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520088

RESUMO

The regulation of PD-L1 is the key question, which largely determines the outcome of the immune checkpoint inhibitors (ICIs) based therapy. However, besides the transcription level, the protein stability of PD-L1 is closely correlated with its function and has drawn increasing attention. In this study, EZH2 inhibition enhances PD-L1 expression and protein stability, and the deubiquitinase ubiquitin-specific peptidase 22 (USP22) is identified as a key mediator in this process. EZH2 inhibition transcriptionally upregulates USP22 expression, and upregulated USP22 further stabilizes PD-L1. Importantly, a combination of EZH2 inhibitors with anti-PD-1 immune checkpoint blockade therapy improves the tumor microenvironment, enhances sensitivity to immunotherapy, and exerts synergistic anticancer effects. In addition, knocking down USP22 can potentially enhance the therapeutic efficacy of EZH2 inhibitors on colon cancer. These findings unveil the novel role of EZH2 inhibitors in tumor immune evasion by upregulating PD-L1, and this drawback can be compensated by combining ICI immunotherapy. Therefore, these findings provide valuable insights into the EZH2-USP22-PD-L1 regulatory axis, shedding light on the optimization of combining both immune checkpoint blockade and EZH2 inhibitor-based epigenetic therapies to achieve more efficacies and accuracy in cancer treatment.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Proteína Potenciadora do Homólogo 2 de Zeste , Estabilidade Proteica , Ubiquitina Tiolesterase , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Estabilidade Proteica/efeitos dos fármacos , Linhagem Celular Tumoral , Ubiquitinação , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Modelos Animais de Doenças , Microambiente Tumoral/efeitos dos fármacos
14.
Neuro Oncol ; 26(4): 653-669, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38069906

RESUMO

BACKGROUND: Altered branched-chain amino acid (BCAA) metabolism modulates epigenetic modification, such as H3K27ac in cancer, thus providing a link between metabolic reprogramming and epigenetic change, which are prominent hallmarks of glioblastoma multiforme (GBM). Here, we identified mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase (HMGCL), an enzyme involved in leucine degradation, promoting GBM progression and glioma stem cell (GSC) maintenance. METHODS: In silico analysis was performed to identify specific molecules involved in multiple processes. Glioblastoma multiforme cells were infected with knockdown/overexpression lentiviral constructs of HMGCL to assess malignant performance in vitro and in an orthotopic xenograft model. RNA sequencing was used to identify potential downstream molecular targets. RESULTS: HMGCL, as a gene, increased in GBM and was associated with poor survival in patients. Knockdown of HMGCL suppressed proliferation and invasion in vitro and in vivo. Acetyl-CoA was decreased with HMGCL knockdown, which led to reduced NFAT1 nuclear accumulation and H3K27ac level. RNA sequencing-based transcriptomic profiling revealed FOXM1 as a candidate downstream target, and HMGCL-mediated H3K27ac modification in the FOXM1 promoter induced transcription of the gene. Loss of FOXM1 protein with HMGCL knockdown led to decreased nuclear translocation and thus activity of ß-catenin, a known oncogene. Finally, JIB-04, a small molecule confirmed to bind to HMGCL, suppressed GBM tumorigenesis in vitro and in vivo. CONCLUSIONS: Changes in acetyl-CoA levels induced by HMGCL altered H3K27ac modification, which triggers transcription of FOXM1 and ß-catenin nuclear translocation. Targeting HMGCL by JIB-04 inhibited tumor growth, indicating that mediators of BCAA metabolism may serve as molecular targets for effective GBM treatment.


Assuntos
Aminopiridinas , Glioblastoma , Hidrazonas , Liases , Humanos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilação , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Histonas/genética , Liases/genética , Liases/metabolismo
15.
J Affect Disord ; 338: 449-458, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356735

RESUMO

BACKGROUND: Research examining the association between depressive symptoms and mild cognitive impairment (MCI) has yielded conflicting results. This study aimed to examine the bidirectional association between depressive symptoms and MCI, and the extent to which this bidirectional association is moderated by gender and education. METHODS: Data come from the US Health and Retirement Study over a 20-year period (older adults aged ≥50 years). Competing-risks regression is employed to examine the association between baseline high-risk depressive symptoms and subsequent MCI (N = 9317), and baseline MCI and subsequent high-risk depressive symptoms (N = 9428). Interactions of baseline exposures with gender and education are tested. RESULTS: After full adjustment, baseline high-risk depressive symptoms were significantly associated with subsequent MCI (SHR = 1.20, 95%CI 1.08-1.34). Participants with baseline MCI are more likely to develop subsequent high-risk depressive symptoms than those without baseline MCI (SHR = 1.16, 95%CI 1.01-1.33). Although gender and education are risk factors for subsequent depression and MCI, neither moderates the bidirectional association. LIMITATIONS: Items used to construct the composite cognitive measure are limited; selection bias due to missing data; and residual confounding. CONCLUSIONS: Our study found a bidirectional association between depressive symptoms and MCI. High-risk depressive symptoms are related to a higher risk of subsequent MCI; and MCI predicts subsequent high-risk depression. Though neither gender nor education moderated the bidirectional association, public health interventions crafted to reduce the risk of depression and MCI should pivot attention to older women and those with less formal education.


Assuntos
Disfunção Cognitiva , Depressão , Humanos , Feminino , Estados Unidos/epidemiologia , Idoso , Depressão/psicologia , Aposentadoria , Disfunção Cognitiva/psicologia , Fatores de Risco
16.
Nat Rev Cardiol ; 20(7): 495-509, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36781974

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in the detoxification of alcohol-derived acetaldehyde and endogenous aldehydes. The inactivating ALDH2 rs671 polymorphism, present in up to 8% of the global population and in up to 50% of the East Asian population, is associated with increased risk of cardiovascular conditions such as coronary artery disease, alcohol-induced cardiac dysfunction, pulmonary arterial hypertension, heart failure and drug-induced cardiotoxicity. Although numerous studies have attributed an accumulation of aldehydes (secondary to alcohol consumption, ischaemia or elevated oxidative stress) to an increased risk of cardiovascular disease (CVD), this accumulation alone does not explain the emerging protective role of ALDH2 rs671 against ageing-related cardiac dysfunction and the development of aortic aneurysm or dissection. ALDH2 can also modulate risk factors associated with atherosclerosis, such as cholesterol biosynthesis and HDL biogenesis in hepatocytes and foam cell formation and efferocytosis in macrophages, via non-enzymatic pathways. In this Review, we summarize the basic biology and the clinical relevance of the enzymatic and non-enzymatic, tissue-specific roles of ALDH2 in CVD, and discuss the future directions in the research and development of therapeutic strategies targeting ALDH2. A thorough understanding of the complex roles of ALDH2 in CVD will improve the diagnosis, management and prognosis of patients with CVD who harbour the ALDH2 rs671 polymorphism.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Doenças Cardiovasculares/genética , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Polimorfismo Genético , Aldeídos/metabolismo , Etanol
17.
Cancer Rep (Hoboken) ; 6(10): e1893, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37681751

RESUMO

BACKGROUND: Ovarian cancer is difficult to treat and is, therefore, associated with a high fatality rate. Although targeted therapy and immunotherapy have been successfully used clinically to improve the diagnosis and treatment of ovarian cancer, most tumors become drug resistant, and patients experience relapse, meaning that the overall survival rate remains low. AIMS: There is currently a lack of effective biomarkers for predicting the prognosis and/or outcomes of patients with ovarian cancer. Therefore, we used published transcriptomic data derived from a large ovarian cancer sample set to establish a molecular subtyping model of the core genes involved in necroptosis in ovarian cancer. METHODS AND RESULTS: Clustering analysis and differential gene expression analyses were performed to establish the genomic subtypes related to necroptosis and to explore the patterns of regulatory gene expression related to necroptosis in ovarian cancer. A necroptosis scoring system (NSS) was established using principal component analysis according to different regulatory patterns of necroptosis. In addition, this study revealed important biological processes with essential roles in the regulation of ovarian tumorigenesis, including external encapsulating structure organization, leukocyte migration, oxidative phosphorylation, and focal adhesion. Patients with high NSS scores had unique immunophenotypes, such as more abundant M2 macrophages, monocytes, CD4+ memory T cells, and regulatory T cells. Immune checkpoint CD274 had a greater expression in patients with high NSS values. CONCLUSION: This NSS could be used as an independent predictor of prognosis to determine the sensitivity of ovarian cancer to various small-molecule inhibitors, immune checkpoint inhibitors, and platinum-based chemotherapy drugs.


Assuntos
Necroptose , Neoplasias Ovarianas , Humanos , Feminino , Necroptose/genética , Recidiva Local de Neoplasia , Prognóstico , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia
18.
J Adv Res ; 48: 213-225, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36038111

RESUMO

INTRODUCTION: Widespread intra-peritoneal metastases is a main feature of high grade serous ovarian carcinoma (HGSOC). Recently, the extent of tumour heterogeneity was used to evaluate the cancer genomes among multi-regions in HGSOC. However, there is no consensus on the effect of tumour heterogeneity on the evolution of the tumour metastasis process in HGSOC. OBJECTIVES: We performed whole-exome sequencing in multiple regions of matched primary and metastatic HGSOC specimens to reveal the genetic mechanisms of ovarian tumourigenesis and malignant progression. METHODS: 63 samples (including ovarian carcinoma, omentum metastasis, and normal tissues) were used. We analyzed the genomic heterogeneity, traced the subclone dissemination and establishment history and compared the different genetic characters of cancer evolutionary models in HGSOC. RESULTS: We found that HGSOC had substantial intra-tumour heterogeneity (median 54.2, range 0 âˆ¼ 106.7), high inter-patient heterogeneity (P < 0.001), but relatively limited intra-patient heterogeneity (P = 0.949). Two COSMIC mutational signatures were identified in HGSOCs: signature 3 was related to homologous recombination, and signature 1 was associated with aging. Two scenarios were identified by phylogenetic reconstruction in our study: 3 cases (33.3 %) showed star topology, and the other 6 cases (66.7 %) displayed tree topology. Compared with star topology group, more driver events were identified in tree topology group (P < 0.001), and occurred more frequently in early stage than in late stage of clonal evolution (P < 0.001). Moreover, compared with the star topology group, the tree topology group showed higher rate of intra-tumour heterogeneity (P = 0.045). CONCLUSION: A dualistic classification model was proposed for the classification of HGSOC based on spatial heterogeneity, which may contribute to better managing patients and providing individual treatment for HGSOC patients.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Filogenia , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário , Mutação
19.
Heliyon ; 9(10): e20472, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37790965

RESUMO

Objective: The present study aimed to evaluate the efficacy of a new two-dimensional shear wave elastography (2D-SWE) method using a Siemens ultrasound system and its combination with the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) for the differential diagnosis of benign and malignant thyroid nodules. Methods: Conventional ultrasound images and 2D-SWE (E-whole-mean and E-stiffest-mean) were prospectively analyzed in 593 thyroid nodules from 543 patients. Nodules were divided into diameter (D) ≤10 mm and D > 10 mm groups and graded using ACR TI-RADS. The receiver operating characteristic curve was plotted using pathological findings as the gold standard. Diagnostic performance was compared among 2D-SWE, ACR TI-RADS, and their combination. Results: The area under the curve (AUC) for E-whole-mean was higher than that for E-stiffest-mean (0.858 vs. 0.790, P < 0.001), which indicated that it was the better 2D-SWE parameter for differentiating malignant nodules from benign nodules with an optimal cut-off point of 11.36 kPa. In the all-sizes group, the AUC for E-whole-mean was higher than that for ACR TI-RADS (0.858 vs. 0.808, P < 0.001). The combination of E-whole-mean and ACR TI-RADS resulted in a higher AUC (0.929 vs. 0.858 vs. 0.808, P < 0.001), sensitivity (87.0% vs. 80.3% vs. 85.2%), specificity (85.1% vs. 74.0% vs. 73.6%), accuracy (86.3% vs. 78.1% vs. 81.1%), positive predictive value (91.5% vs. 85.1% vs. 85.6%), and negative predictive value (78.0% vs. 67.0% vs. 72.9%) compared to E-whole-mean or ACR TI-RADS alone. The AUC for the combination of 2D-SWE and ACR TI-RADS was superior to that for E-whole-mean or ACR TI-RADS alone in both D ≤ 10 mm and D > 10 mm groups (P < 0.001). Conclusion: As the better 2D-SWE parameter, E-whole-mean had a higher diagnostic power than ACR TI-RADS and enhanced the diagnostic performance of ACR TI-RADS when identifying benign and malignant thyroid nodules. The combination of E-whole-mean and ACR TI-RADS improved the diagnostic performance compared to using ACR TI-RADS alone, providing a new and reliable method for the clinical diagnosis of thyroid nodules.

20.
Adv Sci (Weinh) ; 10(32): e2302231, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822152

RESUMO

The involvement of endothelial barrier function in abdominal aortic aneurysm (AAA) and its upstream regulators remains unknown. Single-cell RNA sequencing shows that disrupted endothelial focal junction is an early (3 days) and persistent (28 days) event during Angiotensin II (Ang II)-induced AAA progression. Consistently, mRNA sequencing on human aortic dissection tissues confirmed downregulated expression of endothelial barrier-related genes. Aldehyde dehydrogenase 2 (ALDH2), a negative regulator of AAA, is found to be upregulated in the intimal media of AAA samples, leading to testing its role in early-stage AAA. ALDH2 knockdown/knockout specifically in endothelial cells (ECs) significantly increases expression of EC barrier markers related to focal adhesion and tight junction, restores endothelial barrier integrity, and suppresses early aortic dilation of AAA (7 and 14 days post-Ang II). Mechanically, ELK3 acts as an ALDH2 downstream regulator for endothelial barrier function preservation. At the molecular level, ALDH2 directly binds to LIN28B, a regulator of ELK3 mRNA stability, hindering LIN28B binding to ELK3 mRNA, thereby depressing ELK3 expression and impairing endothelial barrier function. Therefore, preserving vascular endothelial barrier integrity via ALDH2-specific knockdown in ECs holds therapeutic potential in the early management of AAAs.


Assuntos
Aneurisma da Aorta Abdominal , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Aneurisma da Aorta Abdominal/genética , Transdução de Sinais , RNA Mensageiro/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA