Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(10): 1544-1546, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207621

RESUMO

Most human proteins lack small-molecule ligands, rendering these proteins "undruggable." In this issue of Molecular Cell, Lazear et al.1 develop a novel chemical proteomic screening platform and discover new chemical probes targeting previously undruggable protein complexes.


Assuntos
Proteínas , Proteômica , Humanos , Proteômica/métodos , Proteínas/metabolismo , Cromatografia em Gel
2.
J Am Chem Soc ; 146(14): 9779-9789, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561350

RESUMO

Protein O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.


Assuntos
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Processamento de Proteína Pós-Traducional , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
3.
Hum Psychopharmacol ; 39(1): e2886, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983624

RESUMO

OBJECTIVES: To analyze the factors affecting the concentrations of the active moiety of risperidone (RIS) and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) in psychiatric outpatients taking immediate-release formulations. METHODS: This is a retrospective study on the therapeutic drug monitoring (TDM) data regarding RIS and 9-OH-RIS in adult psychiatric outpatients. TDM data with simultaneous RIS and 9-OH-RIS monitoring from March 2018 to February 2020 and relevant medical records (including dosage, dosage form, sex, age, diagnosis, combined medication, and comorbid disease) from 399 adult psychiatric outpatients (223 males and 176 females) were included in this study. RESULTS: The daily dose of RIS was 5.56 ± 2.05 mg, the concentration of total active moiety was 42.35 ± 25.46 ng/mL, and the dose-adjusted plasma concentration (C/D) of active moiety was 7.83 ± 3.87 (ng/ml)/(mg/day). Dose, sex, and age were identified as important factors influencing concentrations of RIS and 9-OH-RIS in adult psychiatric outpatients. CONCLUSIONS: Individualized medication adjustments should be made according to the specific conditions of psychiatric outpatients. The findings strongly support the use of TDM to guide dosing decisions in psychiatric outpatients taking RIS.


Assuntos
Antipsicóticos , Risperidona , Adulto , Masculino , Feminino , Humanos , Risperidona/uso terapêutico , Palmitato de Paliperidona/efeitos adversos , Antipsicóticos/efeitos adversos , Estudos Retrospectivos , Pacientes Ambulatoriais
4.
Scand J Med Sci Sports ; 34(1): e14566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268069

RESUMO

PURPOSE: The current biomechanical research on the application of Kinesio taping (KT) to patients with chronic ankle instability (CAI) has focused on testing the expected movements. However, unexpected movements are more common in actual sports. Therefore, the present study aimed to investigate the effects of KT on the biomechanical characteristics of the knee and ankle joints during unexpected jumping movements. METHODS: Twenty-one patients with unilateral CAI were recruited to capture the biomechanical parameters during unexpected jumping movements under different interventions: no taping (NT), placebo taping (PT), and KT. A one-way repeated measures analysis of variance was used to compare the differences in knee and ankle biomechanical characteristics among patients with CAI between the three intervention conditions. RESULTS: At initial contact, the KT group demonstrated a significant decrease in ankle plantarflexion and knee flexion angles compared to the NT group (p < 0.05). At the early landing phase, the KT group had a significant increase in peak ankle dorsiflexion angle, peak ankle eversion angle, peak ankle dorsiflexion moment, and peak ankle eversion moment compared to the NT and PT groups (p < 0.05). Furthermore, the KT group had a significantly reduced peak knee flexion angle, peak knee eversion angle, and peak vertical ground reaction force (p < 0.05) compared to the NT and PT groups. CONCLUSION: KT significantly improves the sprain-prone touchdown posture of patients with CAI. And reducing the risk of ankle sprains during the early landing phase by promoting ankle dorsiflexion and eversion angles and moments.


Assuntos
Traumatismos do Tornozelo , Instabilidade Articular , Humanos , Tornozelo , Extremidade Inferior , Articulação do Tornozelo , Traumatismos do Tornozelo/terapia , Articulação do Joelho , Instabilidade Articular/terapia
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819365

RESUMO

We studied the temporal dynamics of activity within and across functional MRI (fMRI)-derived nodes of intrinsic resting-state networks of the human brain using intracranial electroencephalography (iEEG) and repeated single-pulse electrical stimulation (SPES) in neurosurgical subjects implanted with intracranial electrodes. We stimulated and recorded from 2,133 and 2,372 sites, respectively, in 29 subjects. We found that N1 and N2 segments of the evoked responses are associated with intra- and internetwork communications, respectively. In a separate cognitive experiment, evoked electrophysiological responses to visual target stimuli occurred with less temporal separation across pairs of electrodes that were located within the same fMRI-defined resting-state networks compared with those located across different resting-state networks. Our results suggest intranetwork prior to internetwork information processing at the subsecond timescale.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/fisiologia , Cognição/fisiologia , Estimulação Elétrica , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Análise Espaço-Temporal
6.
J Proteome Res ; 22(10): 3360-3367, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37676756

RESUMO

Activity-based proteome profiling (ABPP) is a powerful chemoproteomic technology for global profiling of protein activity and modifications. The tandem orthogonal proteolysis-ABPP (TOP-ABPP) strategy utilizes a clickable enrichment tag with cleavable linkers to enable direct identification of probe-labeled residue sites within the target proteins. However, such a site-specific chemoproteomic workflow requires a long operation time and complex sample preparation procedures, limiting its wide applications. In the current study, we developed a simplified and ultrafast peptide enrichment and release TOP-ABPP ("superTOP-ABPP") pipeline for site-specific quantitative chemoproteomic analysis with special agarose resins that are functionalized with azide groups and acid-cleavable linkers. The azide groups allow enrichment of peptides that are labeled by the alkynyl probe through a one-step click reaction, which can be conveniently released by acid cleavage for subsequent LC-MS/MS analysis. In comparison with the traditional TOP-ABPP method, superTOP-ABPP cuts down the averaged sample preparation time from 25 to 9 h, and significantly improves the sensitivity and coverage of site-specific cysteinome profiling. The method can also be seamlessly integrated with reductive dimethylation to enable quantitative chemoproteomic analysis with a high accuracy. The simplified and ultrafast superTOP-ABPP will become a valuable tool for site-specific quantitative chemoproteomic studies.

7.
Neurobiol Dis ; 184: 106220, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406713

RESUMO

BACKGROUND: Understanding the spatiotemporal propagation profiles of seizures is crucial for the preoperative assessment of epilepsy patients. The present study aimed to investigate whether seizures exhibit propagation patterns that align with intrinsic networks (INs). METHODS: A quantitative analysis was conducted to examine ictal fast activity (IFA). The Epileptogenicity Index (EI) was employed to assess the epileptogenicity, spectral features, and temporal characteristics of IFA. Intra-network and inter-network comparisons were made regarding the IFA-related metrics. Additionally, the metrics were correlated with Euclidean distance. Network connection maps were generated to visualize seizures originating from different INs, allowing for comparisons between distinct groups. RESULTS: Data for 81 seizures in 43 subjects were captured using stereoelectroencephalography implantation. Three metrics were compared: EI, time involvement (TI), and energy ratio index (ERI). Intra-network channels exhibited higher EI, earlier involvement of IFA, and stronger high-frequency energy. These findings were further validated through subgroup analyses stratified by neuropathology, seizure type, and seizure origination lobe. Correlation analyses revealed a negative association between distance and both EI and ERI, while distance exhibited a positive correlation with TI. Seizures originating from different INs exhibited varying propagation characteristics. CONCLUSIONS: The study findings highlight the dominant role of intra-network dynamics over inter-network during seizure propagation. These results contribute to our understanding of seizure dynamics and their relationship with INs.


Assuntos
Eletrocorticografia , Epilepsia , Humanos , Eletroencefalografia/métodos , Convulsões , Encéfalo , Epilepsia/cirurgia
8.
Nat Methods ; 17(2): 232-239, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768061

RESUMO

Autophagy is a degradative program that maintains cellular homeostasis. Autophagy defects have been described in numerous diseases. However, analysis of autophagy rates can be challenging, particularly in rare cell populations or in vivo, due to limitations in currently available tools for measuring autophagy induction. Here, we describe a method to monitor autophagy by measuring phosphorylation of the protein ATG16L1. We developed and characterized a monoclonal antibody that can detect phospho-ATG16L1 endogenously in mammalian cells. Importantly, phospho-ATG16L1 is only present on newly forming autophagosomes. Therefore, its levels are not affected by prolonged stress or late-stage autophagy blocks, which can confound autophagy analysis. Moreover, we show that ATG16L1 phosphorylation is a conserved signaling pathway activated by numerous autophagy-inducing stressors. The described antibody is suitable for western blot, immunofluorescence and immunohistochemistry, and measured phospho-ATG16L1 levels directly correspond to autophagy rates. Taken together, this phospho-antibody represents an exciting tool to study autophagy induction.


Assuntos
Anticorpos/imunologia , Autofagia , Animais , Proteínas de Transporte/metabolismo , Humanos , Fosforilação
9.
Chemistry ; 29(66): e202301991, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37610944

RESUMO

Lithium (Li) metal anodes are drawing considerable attention owing to their ultrahigh theoretical capacities and low electrochemical reduction potentials. However, their commercialization has been hampered by safety hazards induced by continuous dendrite growth. These issues can be alleviated using the ZnO-modified 3D carbon-based host containing carbon nanotubes (CNTs) and carbon felt (CF) fabricated by electroplating in the present study (denoted as ZnO/CNT@CF). The constructed skeleton has lithiophilic ZnO that is gradationally distributed along its thickness. The utilization of an inverted ZnO/CNT@CF-Li anode obtained by flipping over the carbon skeleton after Li electrodeposition is also reported herein. The synergistic effect of the Li metal and lithiophilic sites reduces the nucleation overpotential, thus inducing Li+ to preferentially deposit inside the porous carbon-based scaffold. The composite electrode compels Li to grow away from the separator, thereby significantly improving battery safety. A symmetric cell with the inverted ZnO/CNT@CF-Li electrode operates steadily for 700 cycles at 1 mA cm-2 and 1 mAh cm-2 . Moreover, the ZnO/CNT@CF-Li|S cell exhibits an initial areal capacity of 10.9 mAh cm-2 at a S loading of 10.4 mg cm-2 and maintains a capacity of 3.0 mAh cm-2 after 320 cycles.

10.
Langmuir ; 39(2): 763-770, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36598372

RESUMO

We present a simple, robust, and cheap microfabrication method, based on thermally manipulating capillary action in poly(dimethylsiloxane) (PDMS) microholes, for preparing SU-8 curved microstructures. The microstructure morphology including convexity-concavity and curvature can be controlled via tuning the formation temperature. The convex SU-8 microspherical crowns with a height of 40 µm were formed at 10 °C, whereas the concave SU-8 microspherical crowns with a height of 90 µm were formed at 100 °C. The morphology of the microstructures is dictated by the thermally controlled combination of the pressure difference across the interface, contact angle, and surface tension. The fabricated microstructures with a spherical surface can be used as a microlens array or a mold for producing a microlens array. The clear and uniform images were observed using the generated microlens arrays. The equilibrium morphology of the microstructures can be predicted by numerical simulation, which can lessen the number of experiments and thus the design cost. The proposed method has the potential to find applications in industrial fields.

11.
Inorg Chem ; 62(34): 14086-14093, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635648

RESUMO

The PbI2 framework is critical for two-step fabricated perovskite solar cells. This study investigates the effects of introducing two functional urea-based molecules, biuret (BU) and dithiobiuret (DTBU), into the PbI2 precursor solution on the absorber layer and overall device performance. BU, which contains C═O, enhanced device performance and stability, whereas DTBU, which contains C═S, had negative effects. Research analysis revealed the differences in the spatial structures of the two urea-based molecules. The introduction of symmetrical BU molecules facilitated the crystallization of PbI2, whereas the introduction of DTBU with a twisted molecular structure led to inferior crystallization performance of PbI2. The perovskite thin film, obtained by introducing BU into the PbI2 precursor solution, demonstrated superior performance, characterized by a decreased defect density and an extended carrier lifetime. The device performance and stability were enhanced, resulting in higher open-circuit voltage and fill factor. The highest achieved power conversion efficiency was 23.50%. After 1300 h of storage under unpackaged conditions at 30-40% humidity, the devices maintained 93% of their initial efficiency. Conversely, the devices prepared with DTBU doping exhibited inferior performance and stability, displaying power conversion efficiency below 10% and faster degradation under the same humidity conditions.

12.
Mol Ther ; 30(7): 2603-2617, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278676

RESUMO

Cancer cells respond to various stressful conditions through the dynamic regulation of RNA m6A modification. Doxorubicin is a widely used chemotherapeutic drug that induces DNA damage. It is interesting to know whether cancer cells regulate the DNA damage response and doxorubicin sensitivity through RNA m6A modification. Here, we found that doxorubicin treatment significantly induced RNA m6A methylation in breast cancer cells in both a dose- and a time-dependent manner. However, protein arginine methyltransferase 5 (PRMT5) inhibited RNA m6A modification under doxorubicin treatment by enhancing the nuclear translocation of the RNA demethylase AlkB homolog 5 (ALKBH5), which was previously believed to be exclusively localized in the nucleus. Then, ALKBH5 removed the m6A methylation of BRCA1 for mRNA stabilization and further enhanced DNA repair competency to decrease doxorubicin efficacy in breast cancer cells. Importantly, we identified the approved drug tadalafil as a novel PRMT5 inhibitor that could decrease RNA m6A methylation and increase doxorubicin sensitivity in breast cancer. The strategy of targeting PRMT5 with tadalafil is a promising approach to promote breast cancer sensitivity to doxorubicin through RNA methylation regulation.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Desmetilação , Doxorrubicina/farmacologia , Feminino , Humanos , Proteína-Arginina N-Metiltransferases/genética , RNA , Tadalafila
13.
Cell Mol Biol (Noisy-le-grand) ; 67(6): 274-280, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35818186

RESUMO

This study aimed to analyze the correlation between the level of brain natriuretic peptide (BNP) and the condition and prognosis of chronic heart failure (CHF). For this purpose, between January 2017 and July 2020, we recruited a total of 120 CHF patients who were treated in Cangzhou Central Hospital into this study, consisting of 40 patients in NYHA II, 40 in NYHA III and 40 in NYHA IV, and simultaneously, 40 subjects with normal heart function were enrolled into the control group. General data were collected from the patients and subjects, and laboratory tests regarding the BNP level, LVEDD and LVEF were carried out. Correlation between plasma level of BNP and the evaluation of condition and prognosis of CHF was also analyzed. For further evaluation, the expression of BNP gene expression was considered in the femoral blood of participants by the Real-time PCR technique. The results showed that comparison over the clinical data of subjects among these groups showed no significant difference (P > 0.05). In the research group, the averages of LVEDD and BNP in plasma were (58.53±3.75) mm and (5089.86±22.39) pg/mL, significantly higher than those in the control group, while the LVEF was (45.66±3.42) %, which was lower than that in the control group (all P < 0.05). For the subgroup comparison, as the NYHA class augmented, patients also had a significant increase in the mortality rate and the difference among subgroups had statistical significance (P < 0.05). Furthermore, with 442 pg/mL as a critical point for BNP, patients in the research group were further divided into the BNP>442 pg/mL group and BNP ≤442pg/mL group, and the statistical analysis revealed that in the BNP>442 pg/mL group, the incidence rate of cardiovascular events, re-hospitalization rate and mortality rate were 53.53%, 14.14% and 7.07%, which were all significantly higher than those in the BNP ≤ 442 pg/mL group (all P < 0.05). Also, BMP gene expression was increased in NYHA II, NYHA III, and NYHA IV groups compared to the control group. However, this increase was statistically significant in the NYHA III group (P <0.05) and in the NYHA IV group (P <0.01) compared to the control group. In conclusion, the level of BNP in plasma can reflect the condition of CHF and is critical to the clinical diagnosis, treatment and prognosis evaluation and evaluation of the BNP gene confirmed the result. Thus, it is worth being promoted in clinical practice.


Assuntos
Insuficiência Cardíaca , Peptídeo Natriurético Encefálico , Doença Crônica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Humanos , Plasma
14.
Bioorg Chem ; 128: 105929, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35701239

RESUMO

Twenty-three new riminophenazine and pyrido[3,2-b]quinoxaline derivatives were prepared and examined for their antimycobacterial activities against Mycobacterium marinum and Mycobacterium tuberculosis H37Rv, taking clofazimine (1) as the lead. Structure-activity relationship (SAR) analysis revealed that the introduction of a heterocycle or diethylamine substituted benzene moiety on the N-5 atom might be beneficial for activity. The most potent compound 7m also displayed enhanced activity against wild-type as well as multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB clinical isolates, with the MICs ranging from 0.08 to 1.25 µg/mL, especially effective toward strain M20A507, resistant to 1. Further mechanism study indicated that its anti-TB activity was independent of cell membrane disruption, but related to NDH-2 reduction and the resulting high ROS production. Our study provides instructive guidance for the further development of clofazimine derivatives into promising antimicrobial agents against MDR and XDR TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Clofazimina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
15.
EMBO Rep ; 20(7): e46885, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267703

RESUMO

Autophagy is a highly regulated catabolic pathway that is potently induced by stressors including starvation and infection. An essential component of the autophagy pathway is an ATG16L1-containing E3-like enzyme, which is responsible for lipidating LC3B and driving autophagosome formation. ATG16L1 polymorphisms have been linked to the development of Crohn's disease (CD), and phosphorylation of CD-associated ATG16L1 T300A (caATG16L1) has been hypothesized to contribute to cleavage and autophagy dysfunction. Here we show that ULK1 kinase directly phosphorylates ATG16L1 in response to infection and starvation. Phosphorylated ATG16L1 localizes to the site of internalized bacteria and stable cell lines harbouring a phospho-dead mutant of ATG16L1 have impaired xenophagy, indicating a role for ATG16L1 phosphorylation in the promotion of anti-bacterial autophagy. In contrast to wild-type ATG16L1, ULK1-mediated phosphorylation of caATG16L1 drives its destabilization in response to stress. In summary, our results show that ATG16L1 is a novel target of ULK1 kinase and that ULK1 signalling to ATG16L1 is a double-edged sword, enhancing the function of the wild-type ATG16L1, but promoting degradation of caATG16L1.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Doença de Crohn/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macroautofagia , Mutação , Animais , Proteínas Relacionadas à Autofagia/genética , Células HCT116 , Células HEK293 , Humanos , Camundongos , Fosforilação , Estabilidade Proteica , Estresse Fisiológico
16.
J Cardiovasc Pharmacol ; 77(5): 594-602, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951696

RESUMO

ABSTRACT: Circular RNAs have pivotal roles in cardiovascular disease. The injury of cardiac myocytes is associated with occurrence of cardiovascular disease. Circular RNA hsa_circ_0010729 (circ_0010729) is associated with cardiac myocytes injury. However, the mechanism of circ_0010729 in cardiac myocytes injury remains largely unclear. In our study, cardiac myocytes were treated by oxygen-glucose deprivation (OGD). The abundances of circ_0010729, microRNA-338-3p (miR-338-3p), and calmodulin 2 (CALM2) were detected by quantitative reverse transcription polymerase chain reaction or Western blot. OGD-induced damage in AC16 cells was assessed by cell viability, apoptosis, and autophagy using Cell Counting Kit-8, flow cytometry, and Western blot analyses. The target relationship of miR-338-3p and circ_0010729 or CALM2 was explored by starBase and dual-luciferase reporter analysis. Our results showed that the circ_0010729 level was enhanced in OGD-treated AC16 cells and murine primary cardiac myocytes. circ_0010729 silence weakened OGD-induced viability inhibition and promotion of apoptosis and autophagy in AC16 cells and murine primary cardiac myocytes. miR-338-3p was sponged by circ_0010729 and miR-338-3p knockdown alleviated the effect of circ_0010729 silence on OGD-induced damage. miR-338-3p directly targeted CALM2 to inhibit OGD-induced damage in AC16 cells. circ_0010729 could regulate CALM2 expression by sponging miR-338-3p. Collectively, circ_0010729 interference mitigated OGD-induced damage in cardiac myocytes through increasing cell viability and inhibiting apoptosis and autophagy by regulating miR-338-3p/CALM2 axis. This study indicated circ_0010729 might act as a target for treatment of cardiovascular disease.


Assuntos
Calmodulina/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , RNA Circular/metabolismo , Animais , Apoptose , Autofagia , Calmodulina/genética , Hipóxia Celular , Linhagem Celular , Regulação para Baixo , Glucose/deficiência , Humanos , Camundongos , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , RNA Circular/genética , Transdução de Sinais
17.
Epilepsy Behav ; 115: 107661, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434884

RESUMO

OBJECTIVE: Mesial temporal lobe epilepsy (MTLE) is one of the most common types of intractable epilepsy. The hippocampus and amygdala are two crucial structures of the mesial temporal lobe and play important roles in the epileptogenic network of MTLE. This study aimed to explore the effective connectivity among the hippocampus, amygdala, and temporal neocortex and to determine whether differences in effective connectivity exist between MTLE patients and non-MTLE patients. METHODS: This study recruited 20 patients from a large cohort of drug-resistant epilepsy patients, of whom 14 were MTLE patients. Single-pulse electrical stimulation (SPES) was performed to acquire cortico-cortical evoked potentials (CCEPs). The root mean square (RMS) was used as the metric of the magnitude of CCEP to represent the effective connectivity. We then conducted paired and independent sample t-tests to assess the directionality of the effective connectivity. RESULTS: In both MTLE patients and non-MTLE patients, the directional connectivity from the amygdala to the hippocampus was stronger than that from the hippocampus to the amygdala (P < 0.01); the outward connectivity from the amygdala to the cortex was stronger than the inward connectivity from the cortex to the amygdala (P < 0.01); the amygdala had stronger connectivity to the neocortex than the hippocampus (P < 0.01). In MTLE patients, the neocortex had stronger connectivity to the hippocampus than to the amygdala (P < 0.01). No significant differences in directional connectivity were noted between the two groups. CONCLUSIONS: A unique effective connectivity pattern among the hippocampus, amygdala, and temporal neocortex was identified through CCEPs analysis. This study may aid in our understanding of physiological and pathological networks in the brain and inspire neurostimulation protocols for neurological and psychiatric disorders.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Tonsila do Cerebelo , Potenciais Evocados , Hipocampo , Humanos
18.
Bioorg Chem ; 117: 105432, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678602

RESUMO

Twenty-nine 12 N-substituted aloperine derivatives were synthesized and screened for suppression on PD-L1 expression in H460 cells, as a continuation of our work. Systematic structural modifications led to the identification of compound 6b as the most active PD-L1 modulator. Compound 6b could significantly down-regulate both constitutive and inductive PD-L1 expression in NSCLC cells, and successively enhance the cytotoxicity of co-cultured T cells against tumor cells at the concentration of 20 µM. Also, it exhibited a moderate in vivo anticancer efficacy against Lewis tumor xenograft with a stable PK and safety profile. The mechanism study indicated that 6b mediated the degradation of PD-L1 through a proteasome pathway, rather than a lysosome route. These results provided the powerful information for cancer immunotherapy of aloperine derivatives with unique endocyclic skeleton by targeting PD-L1 to activate immune cells to kill cancer cells.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Quinolizidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Quinolizidinas/síntese química , Quinolizidinas/química , Relação Estrutura-Atividade
19.
New Phytol ; 227(5): 1453-1466, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32315442

RESUMO

Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.


Assuntos
Proteínas de Arabidopsis , Florígeno , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Florígeno/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histonas/metabolismo , Metilação , Fotoperíodo , Espectrometria de Massas em Tandem
20.
Molecules ; 25(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121156

RESUMO

Twenty-seven novel 12N-substituted aloperine derivatives were synthesized and investigated for their inhibitory effects on collagen α1 (I) (COL1A1) promotor in human hepatic stellate LX-2 cells, taking aloperine (1) as the hit. A structure-activity relationship (SAR) study disclosed that the introduction of suitable substituents on the 12N atom might enhance the activity. Compound 4p exhibited a good promise on down-regulating COL1A1 expression with the IC50 value of 16.5 µM. Its inhibitory activity against COL1A1 was further confirmed on both mRNA and protein levels. Meanwhile, it effectively inhibited the expression of other fibrogenic proteins, such as transforming growth factor ß1 (TGF-ß1) and smooth muscle actin (α-SMA). It also exhibited good in vivo safety profile with the oral LD50 value of 400 mg kg-1 in mice. The results initiated the anti-liver fibrogenic study of aloperine derivatives, and the key compound 4p was selected as a novel lead for further investigation against liver fibrogenesis.


Assuntos
Fígado/efeitos dos fármacos , Fígado/patologia , Piperidinas/química , Piperidinas/farmacologia , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Citoproteção/efeitos dos fármacos , Desenho de Fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/metabolismo , Piperidinas/efeitos adversos , Regiões Promotoras Genéticas/genética , Quinolizidinas , Segurança , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA