Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(10): 5190-5226, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38586901

RESUMO

Etching technology - one of the representative modern semiconductor device makers - serves as a broad descriptor for the process of removing material from the surfaces of various materials, whether partially or entirely. Meanwhile, thinning technology represents a novel and highly specialized approach within the realm of etching technology. It indicates the importance of achieving an exceptionally sophisticated and precise removal of material, layer-by-layer, at the nanoscale. Notably, thinning technology has gained substantial momentum, particularly in top-down strategies aimed at pushing the frontiers of nano-worlds. This rapid development in thinning technology has generated substantial interest among researchers from diverse backgrounds, including those in the fields of chemistry, physics, and engineering. Precisely and expertly controlling the layer numbers of 2D materials through the thinning procedure has been considered as a crucial step. This is because the thinning processes lead to variations in the electrical and optical characteristics. In this comprehensive review, the strategies for top-down thinning of representative 2D materials (e.g., graphene, black phosphorus, MoS2, h-BN, WS2, MoSe2, and WSe2) based on conventional plasma-assisted thinning, integrated cyclic plasma-assisted thinning, laser-assisted thinning, metal-assisted splitting, and layer-resolved splitting are covered in detail, along with their mechanisms and benefits. Additionally, this review further explores the latest advancements in terms of the potential advantages of semiconductor devices achieved by top-down 2D material thinning procedures.

2.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235093

RESUMO

Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.


Assuntos
Carbono , Biopolímeros , Carbono/química , Capacitância Elétrica , Eletrodos , Porosidade
3.
Inorg Chem ; 60(3): 1449-1461, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464045

RESUMO

The development of cost-effective, functional materials that can be efficiently used for sustainable energy generation is highly desirable. Herein, a new molecular precursor of bismuth (tris(selenobenzoato)bismuth(III), [Bi(SeOCPh)3]), has been used to prepare selectively Bi or Bi2Se3 nanosheets via a colloidal route by the judicious control of the reaction parameters. The Bi formation mechanism was investigated, and it was observed that the trioctylphosphine (TOP) plays a crucial role in the formation of Bi. Employing the vapor deposition method resulted in the formation of exclusively Bi2Se3 films at different temperatures. The synthesized nanomaterials and films were characterized by p-XRD, TEM, Raman, SEM, EDX, AFM, XPS, and UV-vis spectroscopy. A minimum sheet thickness of 3.6 nm (i.e., a thickness of 8-9 layers) was observed for bismuth, whereas a thickness of 4 nm (i.e., a thickness of 4 layers) was observed for Bi2Se3 nanosheets. XPS showed surface oxidation of both materials and indicated an uncapped surface of Bi, whereas Bi2Se3 had a capping layer of oleylamine, resulting in reduced surface oxidation. The potential of Bi and Bi2Se3 nanosheets was tested for overall water-splitting application. The OER and HER catalytic performances of Bi2Se3 indicate overpotentials of 385 mV at 10 mA cm-2 and 220 mV, with Tafel slopes of 122 and 178 mV dec-1, respectively. In comparison, Bi showed a much lower OER activity (506 mV at 10 mA cm-2) but a slightly better HER (214 mV at 10 mA cm-2) performance. Similarly, Bi2Se3 nanosheets were observed to exhibit cathodic photocurrent in photoelectrocatalytic activity, which indicated their p-type behavior.

4.
Inorg Chem ; 60(15): 11374-11384, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34260204

RESUMO

Straightforward synthetic routes to the preparation of transition metal phosphides or their chalcogenide analogues are highly desired due to their widespread applications, including catalysis. We report a facile and simple route for the preparation of a pure phase nickel phosphide (Ni2P) and phase transformations in the nickel sulfide (NiS) system through a solvent-less synthetic protocol. Decomposition of different sulfur-based complexes (dithiocarbamate, xanthate, and dithiophosphonate) of nickel(II) was investigated in the presence and absence of triphenylphosphine (TPP). The optimization of reaction parameters (nature of precursor, ratio of TPP, temperature, and time) indicated that phosphorus- and sulfur-containing inorganic dithiophosphonate complexes and TPP (1:1 mole ratio) produced pure nickel phosphide, whereas different phases of nickel sulfide were obtained from dithiocarbamate and xanthate precursors in the presence or absence of TPP. A plausible explanation of the sulfide or phosphide phase formation is suggested, and the performance of Ni2P was investigated as an electrocatalyst for supercapacitance and overall water-splitting reactions. The performance of Ni2P with the surface free of any capping agents is not well explored, as common synthetic methods are solution-based routes; therefore, the electrocatalytic performance was also compared with metal phosphides, prepared by other routes. The highest specific capacitance of 367 F/g was observed at 1 A/g, and the maximum energy and power density of Ni2P were calculated to be 17.9 Wh/kg and 6951 W/kg, respectively. The prepared nickel phosphide required overpotentials of 174 and 316 mV along with Tafel slopes of 115 and 95 mV/dec to achieve a current density of 10 mA/cm2 for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively.

5.
Chemistry ; 26(12): 2693-2704, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31773811

RESUMO

Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2 P(OR)(4-C6 H4 OMe)}2 ] [R=H (1), C3 H7 (2)] and [Ni{S2 P(OR)(4-C6 H4 OEt}2 ] [R=(C6 H5 )2 CH (3)] is described; their structures were confirmed by single-crystal X-ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri-octylphosphine oxide/1-octadecene (TOPO/ODE), TOPO/tri-n-octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2 P, Ni5 P4 , and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2 P and Ni5 P4 , respectively, and that of complex 3 in similar solvents led to hexagonal Ni5 P4 , with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent-less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g-1 at a scan rate of 2 mV s-1 followed by 1672 F g-1 of Ni2 P (hex). Similarly, NiS (rhom) and Ni2 P (hex) showed the highest power and energy densities of 7.4 kW kg-1 and 54.16 W kg-1 as well as 6.3 kW kg-1 and 44.7 W kg-1 , respectively. Ni5 P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm-2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5 P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm-2 , respectively, in hydrogen evolution reaction (HER) examinations.

6.
Crit Rev Food Sci Nutr ; 56(11): 1856-67, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-25747894

RESUMO

Dairy-based fermented products and yoghurts have been utilized as potential probiotic products since ancient times. However, recent upsurge in interest of consumers towards dairy alternatives has opened up new vistas for non-dairy probiotic research and development. Various matrices and substrates such as cereals, fruit juices, or mixture thereof are being utilized for delivering these beneficial microorganisms. Each matrix offers some advantages over the other. Vast knowledge available on a number of conventional fermented foods can also be utilized for future research in this area. The present review provides an insight on the recent research/developments in the field of non-dairy probiotic foods with particular reference to the foods consumed conventionally, in addition to their commercial availability and a way forward.


Assuntos
Microbiologia de Alimentos , Microbioma Gastrointestinal , Intestinos/microbiologia , Probióticos/análise , Produtos Fermentados do Leite/microbiologia , Grão Comestível/microbiologia , Fermentação , Inocuidade dos Alimentos , Sucos de Frutas e Vegetais/microbiologia , Humanos
7.
Crit Rev Food Sci Nutr ; 56(9): 1568-84, 2016 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25830555

RESUMO

Food safety is a global health concern. For the prevention and recognition of problems related to health and safety, detection of foodborne pathogen is of utmost importance at all levels of food production chain. For several decades, a lot of research has been targeted at the development of rapid methodology as reducing the time needed to complete pathogen detection tests has been the primary goal of food microbiologists. With the result, food microbiology laboratories now have a wide array of detection methods and automated technologies such as enzyme immunoassay, polymerase chain reaction, and microarrays, which can cut test times considerably. Nucleic acid amplification strategies and advances in amplicon detection methodologies have been the key factors in the progress of molecular microbiology. A comprehensive literature survey has been carried out to give an overview in the field of foodborne pathogen detection. In this paper, we describe the conventional methods, as well as recent developments in food pathogen detection, identification, and quantification, with a major emphasis on molecular detection methods.


Assuntos
Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/análise , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Técnicas Imunoenzimáticas , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
8.
Crit Rev Food Sci Nutr ; 56(10): 1647-61, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-25748244

RESUMO

Fast growing food processing industry in most countries across the world, generates huge quantity of by-products, including pomace, hull, husk, pods, peel, shells, seeds, stems, stalks, bran, washings, pulp refuse, press cakes, etc., which have less use and create considerable environmental pollution. With growing interest in health promoting functional foods, the demand of natural bioactives has increased and exploration for new sources is on the way. Many of the food processing industrial by-products are rich sources of dietary, functional, and novel fibers. These by-products can be directly (or after certain modifications for isolation or purification of fiber) used for the manufacture of various foods, i.e. bread, buns, cake, pasta, noodles, biscuit, ice creams, yogurts, cheese, beverages, milk shakes, instant breakfasts, ice tea, juices, sports drinks, wine, powdered drink, fermented milk products, meat products and meat analogues, synthetic meat, etc. A comprehensive literature survey has been carried on this topic to give an overview in the field dietary fiber from food by-products. In this article, the developments in the definition of fiber, fiber classification, potential sources of dietary fibers in food processing by-products, their uses, functional properties, caloric content, energy values and the labelling regulations have been discussed.


Assuntos
Fibras na Dieta/análise , Manipulação de Alimentos , Alimento Funcional/análise , Aditivos Alimentares/análise , Rotulagem de Alimentos/normas , Carne/análise , Produtos da Carne/análise , Valor Nutritivo
9.
Med Sci Monit ; 22: 3228-47, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27619104

RESUMO

BACKGROUND The present study aimed at determining whether 12 weeks of yoga practice in patients with chronic LBP and MRI-based degenerative changes would result in differences in: (i) self-reported pain, anxiety, and spinal flexibility; and (ii) the structure of the discs or vertebrae. MATERIAL AND METHODS Sixty-two persons with MRI-proven degenerative intervertebral discs (group mean ±S.D., 36.2±6.4 years; 30 females) were randomly assigned to yoga and control groups. However, testing was conducted on only 40 subjects, so only their data are included in this study. The assessments were: self-reported pain, state anxiety, spinal flexibility, and MRI of the lumbosacral spine, performed using a 1.5 Tesla system with a spinal surface column. The yoga group was taught light exercises, physical postures, breathing techniques, and yoga relaxation techniques for 1 hour daily for 3 months. No intervention was given to the control group except for routine medical care. A repeated-measures analysis of variance (ANOVA) with post hoc analyses (which was Bonferroni-adjusted) was used. The Ethics Committee of Patanjali Research Foundation had approved the study which had been registered in the Clinical Trials Registry of India (CTRI/2012/11/003094). RESULTS The yoga group showed a significant reduction in self-reported pain and state anxiety in a before/after comparison at 12 weeks. A few patients in both groups showed changes in the discs and vertebrae at post-intervention assessment. CONCLUSIONS Within 12 weeks, yoga practice reduced pain and state anxiety but did not alter MRI-proven changes in the intervertebral discs and in the vertebrae.


Assuntos
Dor Lombar/diagnóstico por imagem , Dor Lombar/terapia , Manejo da Dor/métodos , Coluna Vertebral/diagnóstico por imagem , Yoga , Adulto , Ansiedade/terapia , Avaliação da Deficiência , Feminino , Humanos , Dor Lombar/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Autorrelato , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Resultado do Tratamento
10.
Environ Monit Assess ; 187(1): 4076, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384368

RESUMO

Persistence behavior of insecticides chlorpyriphos, profenofos, triazophos, cypermethrin, and deltamethrin following the use of three combination formulations Action 505 (chlorpyriphos + cypermethrin), Roket 44EC (profenofos + cypermethrin), and Anaconda Plus (triazophos + deltamethrin) was studied in cabbage following the spray application at the recommended and double doses. Bio-efficacy of these formulations was also evaluated against mustard aphids (Lipaphis erysimi Kaltenbach) and diamondback moth (Plutella xylostella L.). The residues of different insecticides persisted for 5-8 days at low dose and 8-12 days at high dose. The residues dissipated with time and 87-100% dissipation was recorded on the 8th day. The half-life values varied from 0.4 to 1.6 days. Based on the acceptable daily intake (ADI) values, a safe waiting period of 1 day has been suggested for the formulations Action 505 and Roket 44EC and 3 days for Anaconda Plus at the recommended dose of application. Action (1.6 L/ha) treatment was found to be the best as it significantly reduced the diamondback moth (DBM) (~60%) and aphid population (~70%) besides giving the highest yield (170% increase over control).


Assuntos
Brassica/química , Monitoramento Ambiental , Inseticidas/análise , Resíduos de Praguicidas/análise , Animais , Afídeos , Meia-Vida , Controle de Insetos/métodos , Inseticidas/toxicidade , Mariposas , Resíduos de Praguicidas/toxicidade
11.
ACS Omega ; 9(8): 8666-8686, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434856

RESUMO

Bioplastics are one of the answers that can point society toward a sustainable future. Under this premise, the synthesis of polymers with competitive properties using low-cost starting materials is a highly desired factor in the industry. Also, tackling environmental issues such as nonbiodegradable waste generation, high carbon footprint, and consumption of nonrenewable resources are some of the current concerns worldwide. The scientific community has been placing efforts into the biosynthesis of polymers using bacteria and other microbes. These microorganisms can be convenient reactors to consume food and agricultural wastes and convert them into biopolymers with inherently attractive properties such as biodegradability, biocompatibility, and appreciable mechanical and chemical properties. Such biopolymers can be applied to several fields such as packing, cosmetics, pharmaceutical, medical, biomedical, and agricultural. Thus, intending to elucidate the science of microbes to produce polymers, this review starts with a brief introduction to bioplastics by describing their importance and the methods for their production. The second section dives into the importance of bacteria regarding the biochemical routes for the synthesis of polymers along with their advantages and disadvantages. The third section covers some of the main parameters that influence biopolymers' production. Some of the main applications of biopolymers along with a comparison between the polymers obtained from microorganisms and the petrochemical-based ones are presented. Finally, some discussion about the future aspects and main challenges in this field is provided to elucidate the main issues that should be tackled for the wide application of microorganisms for the preparation of bioplastics.

12.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38891530

RESUMO

Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.

13.
ACS Omega ; 9(5): 5862-5875, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343913

RESUMO

Synthesizing polymeric materials that are both sustainable and practical has become a priority. Polyurethanes (PUs) are becoming more popular because of their countless applications and exclusive properties in many sectors. While considering the current issue of environmental problems and the excessive use of petroleum products, nonisocyanate PU (NIPU) are favored due to their sustainability and low toxicity compared to conventional PU. In this work, flexible NIPU films were made using a green and facile method. For that, soybean oil (SBO) was used as the starting material and converted into epoxide SBO, followed by its chemical conversion into carbonated SBO (CSBO) using carbon dioxide gas. Following that, the CSBO reacted with three different aliphatic amines, namely, 1,2-ethylenediamine, 1,4-butylenediamine, and 1,6-hexamethylenediamine, in a solventless and catalyst-free system. The films were cast and cured at 85 °C for different curing times. The effects of the aliphatic diamines and curing times on the NIPU films were evaluated. The individual materials were confirmed with Fourier transform infrared, 1H nuclear magnetic resonance, and gel permeation chromatography. To analyze the thermal and mechanical properties, thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry were performed. Furthermore, mechanical tests such as hardness and tensile strength were also performed along with the degree of swelling, gel content, and contact angle by using several solvents. This study elucidated the structure-property relationship based on the effect of curing time and aliphatic chain size of diamines in the properties of a NIPU film. The satisfactory thermal and mechanical properties, accompanied by a green and facile approach, displayed the potential scalability of the NIPU films.

14.
Nanoscale Horiz ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958571

RESUMO

The growth of graphene on a metal substrate using chemical vapor deposition (CVD), assisted by hydrocarbons such as CH4, C3H8, C2H6, etc. leads to the formation of carbon clusters, amorphous carbon, or any other structure. These carbon species are considered as unwanted impurities; thus a conventional etching step is used simultaneously with CVD graphene growth to remove them using an etching agent. Meanwhile, art etching is a specific method of producing controlled non-Euclidean and Euclidean geometries by employing intricate and precise etching parameters or integrated growth/etching modes. Agents such as H2, O2, CH4, Ar, and others are applied as art etching agents to support the art etching technology. This technique can generate nanopores and customize the properties of graphene, facilitating specific applications such as nanodevices, nanosensors, nanofilters, etc. This comprehensive review investigates how precursor gases concurrently induce graphene growth and art etching during a chemical vapor deposition process, resulting in beautifully etched patterns. Furthermore, it discusses the techniques leading to the creation of these patterns. Finally, the challenges, uses, and perspectives of these non-Euclidean and Euclidean-shaped art etched graphene geometries are discussed.

15.
ACS Omega ; 9(9): 10738-10747, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463334

RESUMO

One possible approach to achieving sustainable development in the materials sector is to produce polymers from plant oils (POs), which are renewable and environmentally beneficial. Polymers with a high concentration of functional groups can be used as cross-linking agents to enhance the properties of epoxidized POs (epoxidation of plant oil)-based polymers. In this work, a unique resin with novel properties and potential uses was produced by cross-linking epoxidized soybean oil (ESO) with branched and flexible polyamines by ring-opening and amidation polymerizations. This approach is straightforward and ecologically benign. After curing, melamine pentane diamine (MPD) polymer maintained its position as the strongest structural adhesive among the synthesized resins, with a bonding strength of almost 2000 kPa for stainless steel; irrespective of the temperature, stainless steel consistently outperforms melamine ethylene diamine-ESO resin in strength comparisons. At 100 °C, stainless steel has a lap shear strength of about 300 kPa, which is far higher than copper and aluminum; at 180 °C, this value increases by another 750 kPa. While MPD-ESO resin has a shear strength of 1996 kPa at 180 °C, melamine butane diamine-ESO resin has a shear strength of only 1220 kPa.

16.
Bioresour Technol ; : 131039, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944313

RESUMO

In this work, carbonization and subsequent activation procedures were adopted to synthesize waste shea butter shells into oxygen-rich interconnected porous activated carbon (SAC_x, x is the mass ratio of KOH used for activation). The SAC_1.5 electrode material showed outstanding electrochemical performance with high specific capacitance (286.6F/g) and improved rate capability, owing to various synergistic effects originating from a high specific surface area (1233.5 m2/g) and O-rich content. The SAC_1.5-based symmetric device delivered an impressive specific capacitance of 91.6F/g with a high energy density of 12.7 Wh/kg at 0.5 A/g. The device recorded 99.9 % capacitance retention after 10,000 charge-discharge cycles. The symmetric supercapacitor device successfully lit an LED bulb for more than 1 h, signifying the potential of bio-waste as an efficient carbon precursor for electrode material in practical supercapacitors. This work offers an efficient, affordable, and environmentally friendly strategy for potential renewable energy storage devices.

17.
Chemosphere ; 339: 139713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549744

RESUMO

Wastewater treatment is critically important for the existence of life on earth; however, this approach involves the removal of toxic metal contaminants and organic pollutants, requiring efficient adsorbent materials. Within this agenda, metal-organic frameworks (MOFs) appear to be potential materials due to their unique properties as efficient adsorbents, effective photocatalysts, and reliable semi-permeable membranes. Therefore, MOFs have undergone various modifications over the years without desirable success to improve adsorption capacity, hydro-stability, reaction kinetics, and reusability. Therefore, scientists around the world got engaged in MOF research for novel modifications, including defect engineering, carbonization, and membrane fabrication, at the laboratory scale. This review focuses on developing MOF-based adsorbents, photocatalysts, and semi-permeable membranes for wastewater treatment since 2015, emphasizing their structural-functional relationships. Finally, the challenges and opportunities with MOFs in wastewater treatment are also underlined for future efforts.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Purificação da Água , Águas Residuárias , Adsorção
18.
Discov Nano ; 18(1): 109, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665422

RESUMO

Although porphyry systems like metallo-phthalocynine are recognized as promising molecular models for electrocatalytic oxygen reduction reaction (ORR), their poor durability and methanol tolerance are still challenges and need improvement before being considered for practical applications. Herein, we successfully designed and constructed a Fe-phthalocyanine-derived highly conjugated 2D covalent organic framework (2D FePc-COF), using octa-amino-Fe-phthalocyanine (OA-FePc) and cyclohexanone as precursors. The prepared 2D FePc-COF was characterized via multiple analytic techniques. The electrochemical studies indicated that prepared 2D FePc-COF was far more superior to OA-FePc and 20% Pt/C, displaying anodic shift of 100 and 50 mV (vs RHE) in formal potential, respectively. Moreover, this catalyst also demonstrated excellent methanol tolerance and durability (over 10,000 CV cycles). Theoretical investigations revealed that due to extended conjugation and elimination of electron donating groups (-NH2), the shifting of dz2-orbital (Fe) energy took nearer to π*-orbital (O2), allowing optimum coupling of both the orbitals, thereby enhancing 4e- ORR. This work demonstrates the art of molecular design, aiming at improving catalytic activity of macrocyclic molecular systems towards ORR.

19.
Discov Nano ; 18(1): 3, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732431

RESUMO

A new, sizable family of 2D transition metal carbonitrides, carbides, and nitrides known as MXenes has attracted a lot of attention in recent years. This is because MXenes exhibit a variety of intriguing physical, chemical, mechanical, and electrochemical characteristics that are closely linked to the wide variety of their surface terminations and elemental compositions. Particularly, MXenes are readily converted into composites with materials including oxides, polymers, and CNTs, which makes it possible to modify their characteristics for a variety of uses. MXenes and MXene-based composites have demonstrated tremendous promise in environmental applications due to their excellent reducibility, conductivity, and biocompatibility, in addition to their well-known rise to prominence as electrode materials in the energy storage sector. The remarkable characteristics of 2D MXene, including high conductivity, high specific surface area, and enhanced hydrophilicity, account for the increasing prominence of its use in storage devices. In this review, we highlight the most recent developments in the use of MXenes and MXene-based composites for electrochemical energy storage while summarizing their synthesis and characteristics. Key attention is paid to applications in supercapacitors, batteries, and their flexible components. Future research challenges and perspectives are also described.

20.
Materials (Basel) ; 16(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770145

RESUMO

MXene is becoming a "rising star" material due to its versatility for a wide portfolio of applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical applications, membranes, flexible and wearable devices, etc. As these applications promote increased interest in MXene research, summarizing the latest findings on this family of materials will help inform the scientific community. In this review, we first discuss the rapid evolutionary change in MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chemistry, etc., will be further discussed in the next section. Then, we review the applications of MXenes and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors, electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible and wearable devices. More importantly, we notice that its excellent metallic conductivity with its hydrophilic nature distinguishes MXene from other materials, and its properties and applications can be further modified by surface functionalization. MXene composites/hybrids outperform pristine MXenes in many applications. In addition, a summary of the latest findings using MXene-based materials to overcome application-specific drawbacks is provided in the last few sections. We hope that the information provided in this review will help integrate lab-scale findings into commercially viable products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA