Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Physiol ; 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37120805

RESUMO

NEW FINDINGS: What is the topic of this review? The vagus nerve is a crucial regulator of cardiovascular homeostasis, and its activity is linked to heart health. Vagal activity originates from two brainstem nuclei: the nucleus ambiguus (fast lane) and the dorsal motor nucleus of the vagus (slow lane), nicknamed for the time scales that they require to transmit signals. What advances does it highlight? Computational models are powerful tools for organizing multi-scale, multimodal data on the fast and slow lanes in a physiologically meaningful way. A strategy is laid out for how these models can guide experiments aimed at harnessing the cardiovascular health benefits of differential activation of the fast and slow lanes. ABSTRACT: The vagus nerve is a key mediator of brain-heart signaling, and its activity is necessary for cardiovascular health. Vagal outflow stems from the nucleus ambiguus, responsible primarily for fast, beat-to-beat regulation of heart rate and rhythm, and the dorsal motor nucleus of the vagus, responsible primarily for slow regulation of ventricular contractility. Due to the high-dimensional and multimodal nature of the anatomical, molecular and physiological data on neural regulation of cardiac function, data-derived mechanistic insights have proven elusive. Elucidating insights has been complicated further by the broad distribution of the data across heart, brain and peripheral nervous system circuits. Here we lay out an integrative framework based on computational modelling for combining these disparate and multi-scale data on the two vagal control lanes of the cardiovascular system. Newly available molecular-scale data, particularly single-cell transcriptomic analyses, have augmented our understanding of the heterogeneous neuronal states underlying vagally mediated fast and slow regulation of cardiac physiology. Cellular-scale computational models built from these data sets represent building blocks that can be combined using anatomical and neural circuit connectivity, neuronal electrophysiology, and organ/organismal-scale physiology data to create multi-system, multi-scale models that enable in silico exploration of the fast versus slow lane vagal stimulation. The insights from the computational modelling and analyses will guide new experimental questions on the mechanisms regulating the fast and slow lanes of the cardiac vagus toward exploiting targeted vagal neuromodulatory activity to promote cardiovascular health.

2.
J Comput Neurosci ; 46(3): 233-256, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31025235

RESUMO

The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.


Assuntos
Sinalização do Cálcio/fisiologia , Simulação por Computador , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Miócitos de Músculo Liso/fisiologia , Bexiga Urinária/fisiologia , Acetofenonas/farmacologia , Benzopiranos/farmacologia , Cálcio/fisiologia , Citosol/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Potenciais da Membrana/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/metabolismo , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/fisiopatologia
3.
Heart Rhythm ; 18(7): 1212-1220, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33737232

RESUMO

BACKGROUND: Although atrial fibrillation ablation is increasingly used for rhythm control therapy, antiarrhythmic drugs (AADs) are commonly used, either alone or in combination with ablation. The effectiveness of AADs is highly variable. Previous work from our group suggests that alterations in atrial resting membrane potential (RMP) induced by low Pitx2 expression could explain the variable effect of flecainide. OBJECTIVE: The purpose of this study was to assess whether alterations in atrial/cardiac RMP modify the effectiveness of multiple clinically used AADs. METHODS: The sodium channel blocking effects of propafenone (300 nM, 1 µM), flecainide (1 µM), and dronedarone (5 µM, 10 µM) were measured in human stem cell-derived cardiac myocytes, HEK293 expressing human NaV1.5, primary murine atrial cardiac myocytes, and murine hearts with reduced Pitx2c. RESULTS: A more positive atrial RMP delayed INa recovery, slowed channel inactivation, and decreased peak action potential (AP) upstroke velocity. All 3 AADs displayed enhanced sodium channel block at more positive atrial RMPs. Dronedarone was the most sensitive to changes in atrial RMP. Dronedarone caused greater reductions in AP amplitude and peak AP upstroke velocity at more positive RMPs. Dronedarone evoked greater prolongation of the atrial effective refractory period and postrepolarization refractoriness in murine Langendorff-perfused Pitx2c+/- hearts, which have a more positive RMP compared to wild type. CONCLUSION: Atrial RMP modifies the effectiveness of several clinically used AADs. Dronedarone is more sensitive to changes in atrial RMP than flecainide or propafenone. Identifying and modifying atrial RMP may offer a novel approach to enhancing the effectiveness of AADs or personalizing AAD selection.


Assuntos
Fibrilação Atrial/metabolismo , Dronedarona/uso terapêutico , Flecainida/uso terapêutico , Átrios do Coração/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Propafenona/uso terapêutico , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Feminino , Átrios do Coração/fisiopatologia , Masculino , Camundongos , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5838-5841, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441663

RESUMO

This paper employs a computational model to study the dual gating modalities of BK channels in smooth muscles. These channels are gated by both membrane potential and intracellular calcium concentration. It has been previously reported that the sensors for these two stimuli are located at different regions of the channel. Thus, the two sensing modalities act independent of each other. Yet, they result in a concerted and synergistic opening of the channel pore. In this paper, we investigate the effects of these two gating mechanisms by computing the effective gating charges contributed by the channel's voltage and calcium sensors. Along with their independent contributions, we study and estimate the interplay and effect of these two modalities on the channel's activation. The voltage and calcium sensors appear to share the 'load' of the gating charges required to activate the channel based on the cytosolic calcium concentration and membrane potential. Thus, through our computational model, we demonstrate how the two independent sensors gate and coordinate the activation of the channel.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Miócitos de Músculo Liso/fisiologia , Cálcio/fisiologia , Simulação por Computador , Humanos , Potenciais da Membrana
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 2692-2695, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060454

RESUMO

This paper presents a computational model for calcium (Ca2+) oscillations in detrusor smooth muscle (DSM) cells. The proposed model simulates the temporal profile of oscillations by incorporating various cellular and subcellular components. The cellular components include calcium influx via membrane and the plasma membrane calcium ATPase (PMCA) pump. The subcellular components include ryanodine receptors (RyRs), inositol 1, 4, 5 trisphosphate receptors (IP3Rs) and the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. The use of both cellular and subcellular components provides a better estimation of the origin and factors affecting these oscillations. Moreover, our work correlates these computational findings with associated physiology of the smooth muscle cell that aids our understanding of intracellular calcium oscillations and its inception in DSM. A deeper insight into calcium signalling in DSM cells is expected to provide a firmer basis for understanding the mechanical contractile activity.


Assuntos
Sinalização do Cálcio , Cálcio , Músculo Liso , Miócitos de Músculo Liso , Canal de Liberação de Cálcio do Receptor de Rianodina , Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA