Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Glia ; 64(7): 1252-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189737

RESUMO

The astrocytic GLT-1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live-cell imaging to study the mechanisms regulating GLT-1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP-time lapse imaging, we show that GLT-1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity-dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT-1 is more stable than diffuse GLT-1 and that glutamate increases GLT-1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT-1 isoforms expressed in the brain, GLT-1a and GLT-1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT-1b more so. GLT-1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT-1 isoforms. Altogether, these data reveal that astrocytic GLT-1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252-1264.


Assuntos
Astrócitos/fisiologia , Transporte Biológico/fisiologia , Córtex Cerebral/citologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Neurônios/fisiologia , 4-Aminopiridina/farmacologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Astrócitos/efeitos dos fármacos , Transporte Biológico/genética , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Transgênicos , Tetrodotoxina/farmacologia
2.
Learn Mem ; 21(7): 351-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24939839

RESUMO

It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory consolidation. Here we found increases in histone H3 lysine 9 dimethylation (H3K9me2) levels in the LA at 1 h following auditory fear conditioning, which continued to be temporally regulated up to 25 h following behavioral training. Additionally, we demonstrate that inhibiting the H3K9me2 histone lysine methyltransferase G9a (H/KMTs-G9a) in the LA impaired fear memory, while blocking the H3K9me2 histone lysine demethylase LSD1 (H/KDM-LSD1) enhanced fear memory, suggesting that H3K9me2 in the LA can bidirectionally regulate fear memory formation. Furthermore, we show that NMDAR activity differentially regulated the recruitment of H/KMT-G9a, H/KDM-LSD1, and subsequent H3K9me2 levels at a target gene promoter. This was largely regulated by GluN2B- but not GluN2A-containing NMDARs via ERK activation. Moreover, fear memory deficits associated with NMDAR or ERK blockade were successfully rescued through pharmacologically inhibiting LSD1, suggesting that enhancements of H3K9me2 levels within the LA can rescue fear memory impairments that result from hypofunctioning NMDARs or loss of ERK signaling. Together, the present study suggests that histone lysine methylation regulation in the LA via NMDAR-ERK-dependent signaling is involved in fear memory formation.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Histonas/metabolismo , Memória de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Metilação , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia
3.
Biochem Soc Trans ; 42(5): 1302-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25233407

RESUMO

Astrocytes exhibit cellular excitability through variations in their intracellular calcium (Ca²âº) levels in response to synaptic activity. Astrocyte Ca²âº elevations can trigger the release of neuroactive substances that can modulate synaptic transmission and plasticity, hence promoting bidirectional communication with neurons. Intracellular Ca²âº dynamics can be regulated by several proteins located in the plasma membrane, within the cytosol and by intracellular organelles such as mitochondria. Spatial dynamics and strategic positioning of mitochondria are important for matching local energy provision and Ca²âº buffering requirements to the demands of neuronal signalling. Although relatively unresolved in astrocytes, further understanding the role of mitochondria in astrocytes may reveal more about the complex bidirectional relationship between astrocytes and neurons in health and disease. In the present review, we discuss some recent insights regarding mitochondrial function, transport and turnover in astrocytes and highlight some important questions that remain to be answered.


Assuntos
Astrócitos/metabolismo , Dinâmica Mitocondrial , Modelos Biológicos , Animais , Astrócitos/citologia , Astrócitos/patologia , Sinalização do Cálcio , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
4.
J Neurosci ; 32(16): 5440-53, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514307

RESUMO

Learning triggers alterations in gene transcription in brain regions such as the hippocampus and the entorhinal cortex (EC) that are necessary for long-term memory (LTM) formation. Here, we identify an essential role for the G9a/G9a-like protein (GLP) lysine dimethyltransferase complex and the histone H3 lysine 9 dimethylation (H3K9me2) marks it catalyzes, in the transcriptional regulation of genes in area CA1 of the rat hippocampus and the EC during memory consolidation. Contextual fear learning increased global levels of H3K9me2 in area CA1 and the EC, with observable changes at the Zif268, DNMT3a, BDNF exon IV, and cFOS gene promoters, which occurred in concert with mRNA expression. Inhibition of G9a/GLP in the EC, but not in the hippocampus, enhanced contextual fear conditioning relative to control animals. The inhibition of G9a/GLP in the EC induced several histone modifications that include not only methylation but also acetylation. Surprisingly, we found that downregulation of G9a/GLP activity in the EC enhanced H3K9me2 in area CA1, resulting in transcriptional silencing of the non-memory permissive gene COMT in the hippocampus. In addition, synaptic plasticity studies at two distinct EC-CA1 cellular pathways revealed that G9a/GLP activity is critical for hippocampus-dependent long-term potentiation initiated in the EC via the perforant pathway, but not the temporoammonic pathway. Together, these data demonstrate that G9a/GLP differentially regulates gene transcription in the hippocampus and the EC during memory consolidation. Furthermore, these findings support the possibility of a role for G9a/GLP in the regulation of cellular and molecular cross talk between these two brain regions during LTM formation.


Assuntos
Córtex Entorrinal/enzimologia , Inativação Gênica/fisiologia , Hipocampo/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Memória/fisiologia , Ativação Transcricional/fisiologia , Análise de Variância , Animais , Azepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunoprecipitação da Cromatina , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Medo , Inativação Gênica/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/fisiologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histonas/metabolismo , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Metilação , Técnicas de Patch-Clamp , Polímeros , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA