RESUMO
The availability of catalytically active peptidylglycine α-amidating monooxygenase (PAM) should provide the means to examine its potential use for the chemienzymatic synthesis of bioactive peptides for the purpose of pharmacological studies. Hypoglycemic activity is one of the most important features of insulin derivatives. Insulin glargine amide was found to show a time/effect profile which is distinctly more flat and thus more advantageous than insulin glargine itself. The aim of the study was to obtain recombinant PAM and use it for insulin analogue amidation. We stably expressed a recombinant PAM in CHO dhfr-cells in culture. Recombinant PAM was partially purified by fractional ammonium sulphate precipitation and ion-exchange chromatography. The enzyme was used to modify glycine-extended A22(G)-B31(K)-B32(R) human insulin analogue (GKR). Alpha-amidated insulin was analyzed by HPLC and mass spectrometry. Hypoglycemic activity of amidated and non-amidated insulin was compared. The pharmacodynamic effect was based on glucose concentration measurement in Wistar rats with hyperglycemia induced by streptozotocin. The overall glycemic profile up to 36 h was evaluated after subcutaneous single dosing at a range of 2.5-7.5 U/kg b.w. The experiment on rats confirmed with a statistical significance (P < 0.05) hypoglycemic activity of GKR-NH2 in comparison to a control group receiving 0.9% NaCl. Characteristics for GKR-NH2 profile was a rather fast beginning of action (0.5-2.0 h) and quite prolonged return to initial values. GKR-NH2 is a candidate for a hypoglycemic drug product in diabetes care. In addition, this work also provides a valuable alternative method for preparing any other recombinant bioactive peptides with C-terminal amidation.
Assuntos
Amidina-Liases/biossíntese , Hipoglicemiantes/química , Insulina/análogos & derivados , Insulina/química , Oxigenases de Função Mista/biossíntese , Proteínas Recombinantes/biossíntese , Amidina-Liases/química , Amidina-Liases/isolamento & purificação , Animais , Glicemia , Células CHO , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Feminino , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Oxigenases de Função Mista/química , Oxigenases de Função Mista/isolamento & purificação , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
BACKGROUND: Numerous bacterial human growth hormone (hGH) expression methods under conventional fermentation and induction conditions have been described. Despite significant progress made in this area over the past several years, production of recombinant hGH by using cellular expression systems still requires further optimization. Fusion of the ubiquitin (Ub) tag to the hGH protein allowed to increase of the overall efficiency of the biosynthesis and improve the protein stability. Ub is a protein composed of 76 amino acid residues with a molecular mass of 8.6 kDa, expressed in all eukaryotes. This protein is an element of the universal protein modification system, which does not occur in bacteria, and is a useful carrier for heterologous proteins obtained through expression in Escherichia coli. Purification of Ub-fusion proteins is easier than that of unconjugated recombinant proteins, and Ub can be removed by deubiquitinating proteases (DUBs or UBPs). RESULTS AND CONCLUSION: In the present study the UBPD2C protease, a stable UBP1 analog, was produced as a recombinant protein in E. coli and used for production of recombinant human growth hormone (rhGH). hGH was expressed as a fusion protein with Ub as a tag. Our findings show that the UBPD2C protease is very effective in removing the Ub moiety from recombinant Ub-fused hGH. The described approach enables obtaining a considerable yield of rhGH in a purity required for pharmaceutical products.