Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312638

RESUMO

ConspectusElectrochemical CO2 reduction to obtain formate or formic acid is receiving significant attention as a method to combat the global warming crisis. Significant efforts have been devoted to the advancement of CO2 reduction techniques over the past few decades. This Account provides a unified discussion on various electrochemical methodologies for CO2 to formate conversion, with a particular focus on recent advancements in utilizing 3d-transition-metal-based molecular catalysts. This Account primarily focuses on understanding molecular functions and mechanisms under homogeneous conditions, which is essential for assessing the optimized reaction conditions for molecular catalysts. The unique architectural features of the formate dehydrogenase (FDH) enzyme provide insight into the key role of the surrounding protein scaffold in modulating the active site dynamics for stabilizing the key metal-bound CO2 intermediate. Additionally, the protein moiety also triggers a facile proton relay around the active site to drive electrocatalytic CO2 reduction forward. The fine-tuning of FDH machinery also ensures that the electrocatalytic CO2 reduction leads to the production of formic acid as the major yield without any other carbonaceous products, while limiting the competitive hydrogen evolution reaction. These lessons from the enzymes are key in designing biomimetic molecular catalysts, primarily based on multidentate ligand scaffolds containing peripheral proton relays. The subtle modifications of the ligand framework ensure the favored production of formic acid following electrocatalytic CO2 reduction in the solution phase. Next, the molecular catalysts are required to be mounted on robust electroactive surfaces to develop their corresponding heterogeneous versions. The surface-immobilization provides an edge to the molecular electrocatalysts as their reactivity can be scaled up with improved durability for long-term electrocatalysis. Despite challenges in developing high-performance, selective catalysts for the CO2 to formic acid transformation, significant progress is being made with the tactical use of graphene and carbon nanotube-based materials. To date, the majority of the research activity stops here, as the development of an operational CO2 to formic acid converting electrolyzer prototype still remains in its infancy. To elaborate on the potential future steps, this Account covers the design, scaling parameters, and existing challenges of assembling large-scale electrolyzers. A short glimpse at the utilization of electrolyzers for industrial-scale CO2 reduction is also provided here. The proper evaluation of the surface-immobilized electrocatalysts assembled in an electrolyzer is a key step for gauging their potential for practical viability. Here, the key electrochemical parameters and their expected values for industrial-scale electrolyzers have been discussed. Finally, the techno-economic aspects of the electrolyzer setup are summarized, completing the journey from tactical design of molecular catalysts to their appropriate application in a commercially viable electrolyzer setup for CO2 to formate electroreduction. Thus, this Account portrays the complete story of the evolution of a molecular catalyst to its sustainable application in CO2 utilization.

2.
Chemistry ; 30(49): e202401785, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38946611

RESUMO

Developing a water-soluble, oxygen-tolerant, and acid-stable synthetic H2 production catalyst is vital for renewable energy infrastructure. To access such an effective catalyst, we strategically incorporated enzyme-inspired, multicomponent outer coordination sphere elements around the cobaloxime (Cl-Co-X) core with suitable axial coordination (X). Our cobaloximes with axial imidazole or L-histidine coordination in photocatalytic HAT including the construction of anilines via a non-canonical cross-coupling approach is found superior compared to commonly used cobaloxime catalysts. The reversible Co(II)/Co(I) process is influenced by the axial N ligand's nature. Imidazole/L-histidine with a higher pKa promptly produces H2 upon irradiation, leading to the improved reactivity compared to previously employed axial (di)chloride or pyridine analogue.

3.
Dalton Trans ; 52(6): 1518-1523, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36594514

RESUMO

The strategic incorporation of the neurotransmitter dopamine around a cobaloxime core resulted in excellent electrocatalytic (rate 8400 s-1) and photocatalytic H2 production under neutral aqueous conditions. The influence of the synthetic outer coordination sphere features continues even with a phenylene-diimino-dioxime motif-coordinated cobalt core.

4.
Nat Commun ; 14(1): 6859, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891216

RESUMO

Facile conversion of CO2 to commercially viable carbon feedstocks offer a unique way to adopt a net-zero carbon scenario. Synthetic CO2-reducing catalysts have rarely exhibited energy-efficient and selective CO2 conversion. Here, the carbon monoxide dehydrogenase (CODH) enzyme blueprint is imitated by a molecular copper complex coordinated by redox-active ligands. This strategy has unveiled one of the rarest examples of synthetic molecular complex-driven reversible CO2 reduction/CO oxidation catalysis under regulated conditions, a hallmark of natural enzymes. The inclusion of a proton-exchanging amine groups in the periphery of the copper complex provides the leeway to modulate the biases of catalysts toward CO2 reduction and CO oxidation in organic and aqueous media. The detailed spectroelectrochemical analysis confirms the synchronous participation of copper and redox-active ligands along with the peripheral amines during this energy-efficient CO2 reduction/CO oxidation. This finding can be vital in abating the carbon footprint-free in multiple industrial processes.

5.
STAR Protoc ; 4(3): 102448, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454297

RESUMO

The presence of efficient energy storage and conversion technologies is essential for the future energy infrastructure. Here, we describe crafting a heterostructure composed of a suitably interlinked CeO2 and polycrystalline Bi2O3 dopant prepared on a reduced graphene oxide (Ce_Bi2O3@rGO) surface. This material exhibits exceptional electrocatalytic hydrogen and oxygen evolution reaction in alkaline water (pH∼14.0) to trigger the full water-splitting cycle as a Janus catalyst. The stepwise catalyst preparation and electrochemical cell assembly for simultaneous hydrogen and oxygen evolution have been narrated. For complete details on the use and execution of this protocol, please refer to Aziz et al. (2022).1.


Assuntos
Hidrogênio , Oxigênio , Ciclo Celular , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA