Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 121, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229303

RESUMO

The model yeast, Saccharomyces cerevisiae, is a popular object for both fundamental and applied research, including the development of biosensors and industrial production of pharmaceutical compounds. However, despite multiple studies exploring S. cerevisiae transcriptional response to various substances, this response is unknown for some substances produced in yeast, such as D-lactic acid (DLA). Here, we explore the transcriptional response of the BY4742 strain to a wide range of DLA concentrations (from 0.05 to 45 mM), and compare it to the response to 45 mM L-lactic acid (LLA). We recorded a response to 5 and 45 mM DLA (125 and 113 differentially expressed genes (DEGs), respectively; > 50% shared) and a less pronounced response to 45 mM LLA (63 DEGs; > 30% shared with at least one DLA treatment). Our data did not reveal natural yeast promoters quantitatively sensing DLA but provide the first description of the transcriptome-wide response to DLA and enrich our understanding of the LLA response. Some DLA-activated genes were indeed related to lactate metabolism, as well as iron uptake and cell wall structure. Additional analyses showed that at least some of these genes were activated only by acidic form of DLA but not its salt, revealing the role of pH. The list of LLA-responsive genes was similar to those published previously and also included iron uptake and cell wall genes, as well as genes responding to other weak acids. These data might be instrumental for optimization of lactate production in yeast and yeast co-cultivation with lactic acid bacteria. KEY POINTS: • We present the first dataset on yeast transcriptional response to DLA. • Differential gene expression was correlated with yeast growth inhibition. • The transcriptome response to DLA was richer in comparison to LLA.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ferro/metabolismo
2.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142769

RESUMO

Ancient lakes are known speciation hotspots. One of the most speciose groups in the ancient Lake Baikal are gammaroid amphipods (Crustacea: Amphipoda: Gammaroidea). There are over 350 morphological species and subspecies of amphipods in Baikal, but the extent of cryptic variation is still unclear. One of the most common species in the littoral zone of the lake, Eulimnogammarus verrucosus (Gerstfeldt, 1858), was recently found to comprise at least three (pseudo)cryptic species based on molecular data. Here, we further explored these species by analyzing their mitogenome-based phylogeny, genome sizes with flow cytometry, and their reproductive compatibility. We found divergent times of millions of years and different genome sizes in the three species (6.1, 6.9 and 8 pg), further confirming their genetic separation. Experimental crossing of the western and southern species, which are morphologically indistinguishable and have adjacent ranges, showed their separation with a post-zygotic reproductive barrier, as hybrid embryos stopped developing roughly at the onset of gastrulation. Thus, the previously applied barcoding approach effectively indicated the separate biological species within E. verrucosus. These results provide new data for investigating genome evolution and highlight the need for precise tracking of the sample origin in any studies in this morphospecies.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Crustáceos , Lagos , Filogenia , Isolamento Reprodutivo
3.
J Invertebr Pathol ; 170: 107330, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31978415

RESUMO

Microsporidia are a highly diverse group of single-celled eukaryotic parasites related to fungi and infecting hosts belonging to all groups of eukaryotes, including some protists, invertebrate and vertebrate animals. We investigated the diversity of microsporidia in the Holarctic amphipod species Gammarus lacustris from mostly, but not limited to, water bodies in the Lake Baikal region. Ribosomal DNA sequencing and host transcriptome sequencing data from various works show that this species is predominantly infected by representatives of the genus Dictyocoela and probably has some features underlying this specific interaction.


Assuntos
Anfípodes/parasitologia , Interações Hospedeiro-Parasita , Microbiota , Microsporídios/classificação , Animais , DNA Ribossômico/análise , Microsporídios/genética , Microsporídios/fisiologia , Análise de Sequência de DNA , Sibéria , Transcriptoma
4.
BMC Evol Biol ; 19(1): 138, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286865

RESUMO

BACKGROUND: The ancient Lake Baikal is characterized by an outstanding diversity of endemic faunas with more than 350 amphipod species and subspecies. We determined the genetic diversity within the endemic littoral amphipod species Eulimnogammarus verrucosus, E. cyaneus and E. vittatus and investigated whether within those species genetically separate populations occur across Lake Baikal. Gammarus lacustris from water bodies in the Baikal area was examined for comparison. RESULTS: Genetic diversities within a species were determined based on fragments of cytochrome c oxidase I (COI) and for E. verrucosus additionally of 18S rDNA. Highly location-specific haplogroups of E. verrucosus and E. vittatus were found at the southern and western shores of Baikal that are separated by the Angara River outflow; E. verrucosus from the eastern shore formed a further, clearly distinct haplotype cluster possibly confined by the Selenga River and Angarskiy Sor deltas. The genetic diversities within these haplogroups were lower than between the different haplogroups. Intraspecific genetic diversities within E. verrucosus and E. vittatus with 13 and 10%, respectively, were similar to interspecies differences indicating the occurrence of cryptic, morphologically highly similar species; for E. verrucosus this was confirmed with 18S rDNA. The haplotypes of E. cyaneus and G. lacustris specimens were with intraspecific genetic distances of 3 and 2%, respectively, more homogeneous indicating no or only recent disruption of gene flow of E. cyaneus across Baikal and recent colonization of water bodies around Baikal by G. lacustris. CONCLUSIONS: Our finding of separation of subgroups of Baikal endemic amphipods to different degrees points to a species-specific ability of dispersal across areas with adverse conditions and to potential geographical dispersal barriers in Lake Baikal.


Assuntos
Anfípodes/genética , Especiação Genética , Lagos , Distribuição Animal , Animais , Variação Genética , Geografia
5.
BMC Genomics ; 20(1): 712, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519144

RESUMO

BACKGROUND: Lake Baikal is one of the oldest freshwater lakes and has constituted a stable environment for millions of years, in stark contrast to small, transient bodies of water in its immediate vicinity. A highly diverse endemic endemic amphipod fauna is found in one, but not the other habitat. We ask here whether differences in stress response can explain the immiscibility barrier between Lake Baikal and non-Baikal faunas. To this end, we conducted exposure experiments to increased temperature and the toxic heavy metal cadmium as stressors. RESULTS: Here we obtained high-quality de novo transcriptome assemblies, covering mutiple conditions, of three amphipod species, and compared their transcriptomic stress responses. Two of these species, Eulimnogammarus verrucosus and E. cyaneus, are endemic to Lake Baikal, while the Holarctic Gammarus lacustris is a potential invader. CONCLUSIONS: Both Baikal species possess intact stress response systems and respond to elevated temperature with relatively similar changes in their expression profiles. G. lacustris reacts less strongly to the same stressors, possibly because its transcriptome is already perturbed by acclimation conditions.


Assuntos
Anfípodes/genética , Anfípodes/fisiologia , Lagos , Estresse Fisiológico/genética , Transcriptoma , Anfípodes/efeitos dos fármacos , Animais , Cádmio/toxicidade , Geografia , Resposta ao Choque Térmico/genética , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
6.
Environ Sci Technol ; 51(12): 7208-7218, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28493692

RESUMO

Eulimnogammarus cyaneus and Eulimnogammarus verrucosus, closely related amphipod species endemic to Lake Baikal, differ with respect to body size (10- to 50-fold lower fresh weights of E. cyaneus) and cellular stress response (CSR) capacity, potentially causing species-related differences in uptake, internal sequestration, and toxic sensitivity to waterborne cadmium (Cd). We found that, compared to E. verrucosus, Cd uptake rates, related to a given exposure concentration, were higher, and lethal concentrations (50%; LC50) were 2.3-fold lower in E. cyaneus (4 weeks exposure; 6 °C). Upon exposures to species-specific subacutely toxic Cd concentrations (nominal LC1; E. cyaneus: 18 nM (2.0 µg L-1); E. verrucosus: 115 nM (12.9 µg L-1); 4 weeks exposure; 6 °C), Cd amounts in metal sensitive tissue fractions (MSF), in relation to fresh weight, were similar in both species (E. cyaneus: 0.25 ± 0.06 µg g-1; E. verrucosus: 0.26 ± 0.07 µg g-1), whereas relative Cd amounts in the biologically detoxified heat stable protein fraction were 35% higher in E. cyaneus. Despite different potencies in detoxifying Cd, body size appears to mainly explain species-related differences in Cd uptake and sensitivities. When exposed to Cd at LC1 over 4 weeks, only E. verrucosus continuously showed 15-36% reduced oxygen consumption rates indicating metabolic depression and pointing to particular sensitivity of E. verrucosus to persisting low-level toxicant pressure.


Assuntos
Anfípodes , Cádmio/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Cádmio/toxicidade , Inativação Metabólica , Cinética , Lagos , Poluentes Químicos da Água/toxicidade
7.
J Exp Zool B Mol Dev Evol ; 322(3): 177-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24677529

RESUMO

Eulimnogammarus verrucosus is an amphipod endemic to the unique ecosystem of Lake Baikal and serves as an emerging model in ecotoxicological studies. We report here on a survey sequencing of its genome as a first step to establish sequence resources for this species. From a single lane of paired-end sequencing data, we estimated the genome size as nearly 10 Gb and we obtained an overview of the repeat content. At least two-thirds of the genome are non-unique DNA, and a third of the genomic DNA is composed of just five families of repetitive elements, including low-complexity sequences. Attempts to use off-the-shelf assembly tools failed on the available low-coverage data both before and after removal of highly repetitive components. Using a seed-based approach we nevertheless assembled short contigs covering 33 pre-microRNAs and the homeodomain-containing exon of nine Hox genes. The absence of clear evidence for paralogs implies that a genome duplication did not contribute to the large genome size. We furthermore report the assembly of the mitochondrial genome using a new, guided "crystallization" procedure. The initial results presented here set the stage for a more complete sequencing and analysis of this large genome.


Assuntos
Anfípodes/genética , Animais , Genes Homeobox , Tamanho do Genoma , Genoma Mitocondrial , Análise de Sequência de DNA , Sibéria
8.
PeerJ ; 12: e17348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770098

RESUMO

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Assuntos
Anfípodes , Hemócitos , Hemolinfa , Lagos , Sanguessugas , Animais , Anfípodes/imunologia , Anfípodes/parasitologia , Hemolinfa/imunologia , Hemolinfa/parasitologia , Sanguessugas/imunologia , Lagos/parasitologia , Hemócitos/imunologia , Imunidade Celular , Sibéria , Interações Hospedeiro-Parasita/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-37301418

RESUMO

The multixenobiotic resistance (MXR) mechanism has been demonstrated to be present in a wide range of species, including aquatic organisms. However, amphipods (Crustacea: Malacostraca: Amphipoda), which constitute a large order of arthropods, are extremely poorly studied in this regard. Information on MXR proteins in these animals would be highly relevant, as some amphipods are important models in ecotoxicology due to their roles in many freshwater environments, including the ancient Lake Baikal. In this work, we studied the diversity of ABC transporters in the available transcriptomes of over 60 endemic Baikal amphipods in comparison to other related species. This showed that most classes of ABC transporters are present in all analyzed species and that most Baikal amphipods detectably express no more than one complete ABCB full transporter. We also showed that these sequences were conservative across different species, and their phylogeny was congruent with the species phylogeny. Thus, we chose the abcb1 coding sequence from Eulimnogammarus verrucosus, a widespread species playing an important role in the lake ecosystem, to establish the first heterologous expression system for an amphipod Abcb1/P-glycoprotein based on the Drosophila melanogaster S2 cell line. The resulting stably transfected S2 cell line was expressing the abcb1 of E. verrucosus about 1000 times higher than the homologous fly genes, and the target protein, Abcb1, showed to confer a high MXR-related efflux activity. Our results indicate the suitability of the S2-based expression systems for the study of arthropod ABCB1 homologs.


Assuntos
Anfípodes , Lagos , Animais , Anfípodes/genética , Anfípodes/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ecossistema , Drosophila melanogaster , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
10.
Gels ; 9(8)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37623084

RESUMO

The implantation of optical sensors is a promising method for monitoring physiological parameters of organisms in vivo. For this, suitable hydrogels are required that can provide a biocompatible interface with the organism's tissues. Amorphous hydrogel is advantageous for administration in animal organs due to its ease of injection compared to resilient analogs. In this study, we investigated the applicability of a semi-liquid 2.5% polyacrylamide hydrogel (PAAH) as a scaffold for fluorescent polyelectrolyte microcapsules (PMs) in rainbow trout. The hydrogel was injected subcutaneously into the adipose fin, which is a small, highly translucent fold of skin in salmonids that is convenient for implanting optical sensors. Using histological methods, we compared tissue organization and in vivo stability of the applied hydrogel at the injection site after administration of uncoated PMs or PMs coated with 2.5% PAAH (PMs-PAAH) for a period of 3 to 14 days. Our results showed that the introduction of PMs into the gel did not have a masking effect, as they were recognized, engulfed, and carried away by phagocytes from the injection site. However, both PMs and PMs-PAAH were found to provoke chronic inflammation at the injection site, although according to cytokine expression in the fish spleen, the irritating effect was local and did not affect the systemic immunity of the fish. Therefore, our study suggests low applicability of 2.5% polyacrylamide as a scaffold for injectable sensors within a timeframe of days.

11.
Animals (Basel) ; 12(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36359166

RESUMO

Implantable optical sensors are emerging tools that have the potential to enable constant real-time monitoring of various internal physiological parameters. Such a possibility will open new horizons for health control not only in medicine, but also in animal husbandry, including aquaculture. In this study, we analyze different organs of commonly farmed rainbow trout (Oncorhynchus mykiss) as implantation sites for fluorescent sensors and propose the adipose fin, lacking an endoskeleton, as the optimal choice. The fin is highly translucent due to significantly thinner dermis, which makes the detectable fluorescence of an implanted sensor operating at the visible light range by more than an order of magnitude higher relative to the skin. Compared to the proximal parts of ray fins, the adipose fin provides easy implantation and visualization of the sensor. Finally, we tested fluorescent pH sensors inside the adipose fin and demonstrated the possibility of acquiring their signal with a simple hand-held device and without fish anesthesia. All these features will most likely make the adipose fin the main "window" into the internal physiological processes of salmonid fish with the help of implantable optical sensors.

12.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235907

RESUMO

Implantable sensors based on shaped biocompatible hydrogels are now being extensively developed for various physiological tasks, but they are usually difficult to implant into small animals. In this study, we tested the long-term in vivo functionality of pH-sensitive implants based on amorphous 2.7% polyacrylamide hydrogel with the microencapsulated fluorescent probe SNARF-1. The sensor was easy to manufacture and introduce into the tissues of a small fish Danio rerio, which is the common model object in biomedical research. Histological examination revealed partial degradation of the gel by the 7th day after injection, but it was not the case on the 1st day. Using the hydrogel sensor, we were able to trace the interstitial pH in the fish muscles under normal and hypercapnic conditions for at least two days after the implantation. Thus, despite later immune response, amorphous polyacrylamide is fully suitable for preparing implantable sensors for various mid-term physiological experiments on small fishes. The proposed approach can be further developed to create implantable sensors for animals with similar anatomy.

13.
Insects ; 13(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35886754

RESUMO

Lake Baikal is the only freshwater reservoir inhabited by deep-water fauna, which originated mostly from shallow-water ancestors. Ommatogammarus flavus and O. albinus are endemic scavenger amphipods (Amphipoda, Crustacea) dwelling in wide depth ranges of the lake covering over 1300 m. O. flavus had been previously collected close to the surface, while O. albinus has never been found above the depth of 47 m. Since O. albinus is a promising model species for various research, here we tested whether O. albinus is less metabolically adapted to atmospheric pressure than O. flavus. We analyzed a number of energy-related traits (contents of glucose, glycogen and adenylates, as well as lactate dehydrogenase activity) and oxidative stress markers (activities of antioxidant enzymes and levels of lipid peroxidation products) after sampling from different depths and after both species' acclimation to atmospheric pressure. The analyses were repeated in two independent sampling campaigns. We found no consistent signs of metabolic disturbances or oxidative stress in both species right after lifting. Despite O. flavus surviving slightly better in laboratory conditions, during long-term acclimation, both species showed comparable reactions without critical changes. Thus, the obtained data favor using O. albinus along with O. flavus for physiological research under laboratory conditions.

14.
PeerJ ; 9: e11337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996284

RESUMO

Polyelectrolyte microcapsules are among the most promising carriers of various sensing substances for their application inside the bloodstream of vertebrates. The long-term effects of biodegradable microcapsules in mammals are relatively well studied, but this is not the case for non-biodegradable microcapsules, which may be even more generally applicable for physiological measurements. In the current study, we introduced non-biodegradable polyelectrolyte microcapsules coated with polyethylene glycol (PMs-PEG) into the circulatory system of zebrafish to assess their long-term effects on fish internal organs with histopathologic analysis. Implantation of PMs-PEG was not associated with the formation of microclots or thrombi in thin capillaries; thus, the applied microcapsules had a low aggregation capacity. The progression of the immune response to the implant depended on the time and the abundance of microparticles in the tissues. We showed that inflammation originated from recognition and internalization of PMs-PEG by phagocytes. These microcapsule-filled immune cells have been found to migrate through the intestinal wall into the lumen, demonstrating a possible mechanism for partial microparticle elimination from fish. The observed tissue immune response to PMs-PEG was local, without a systemic effect on the fish morphology. The most pronounced chronic severe inflammatory reaction was observed near the injection site in renal parenchyma and within the abdominal cavity since PMs-PEG were administered with kidney injection. Blood clots and granulomatosis were noted at the injection site but were not found in the kidneys outside the injection site. Single microcapsules brought by blood into distal organs did not have a noticeable effect on the surrounding tissues. The severity of noted pathologies of the gills was insufficient to affect respiration. No statistically significant alterations in hepatic morphology were revealed after PMs-PEG introduction into fish body. Overall, our data demonstrate that despite they are immunogenic, non-biodegradable PMs-PEG have low potential to cause systemic effects if applied in the minimal amount necessary for detection of fluorescent signal from the microcapsules.

15.
BMC Ecol Evol ; 21(1): 81, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971810

RESUMO

BACKGROUND: Vision is a crucial sense for the evolutionary success of many animal groups. Here we explore the diversity of visual pigments (opsins) in the transcriptomes of amphipods (Crustacea: Amphipoda) and conclude that it is restricted to middle (MWS) and long wavelength-sensitive (LWS) opsins in the overwhelming majority of examined species. RESULTS: We evidenced (i) parallel loss of MWS opsin expression in multiple species (including two independently evolved lineages from the deep and ancient Lake Baikal) and (ii) LWS opsin amplification (up to five transcripts) in both Baikal lineages. The number of LWS opsins negatively correlated with habitat depth in Baikal amphipods. Some LWS opsins in Baikal amphipods contained MWS-like substitutions, suggesting that they might have undergone spectral tuning. CONCLUSIONS: This repeating two-step evolutionary scenario suggests common triggers, possibly the lack of light during the periods when Baikal was permanently covered with thick ice and its subsequent melting. Overall, this observation demonstrates the possibility of revealing climate history by following the evolutionary changes in protein families.


Assuntos
Anfípodes , Opsinas , Anfípodes/genética , Animais , Evolução Biológica , Lagos , Opsinas/genética , Filogenia
16.
Mar Biotechnol (NY) ; 23(3): 463-471, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34076776

RESUMO

Studies of invertebrates have shown that the internal environment of crustaceans is not always sterile in normal conditions, and in many species, it can be populated by microorganisms even in the absence of any visible pathological processes in the body. This observation raises the question of whether genetically modified indigenous hemolymph microorganisms can be used for biotechnological purposes inside the crustacean either as local producers of some compounds or as sensors to physiological parameters. In this study, we tested the ability of the bacteria isolated from the hemolymph of the amphipod Eulimnogammarus verrucosus to hide from the cellular immune response of the host as the most important feature for their potential long-term application in vivo. 16S rDNA amplicon sequencing revealed five common bacterial genera in all analyzed samples of the amphipod hemolymph, among which Pseudomonas is most easily subjected to genome modification and, thus, the most prospective for biotechnological application. Cultivation of Pseudomonas gave us a number of strains undoubtedly derived from the amphipod hemolymph, and one of them (belonging to the Pseudomonas fluorescens group) was chosen for further tests. The primary culture of amphipod hemocytes was used to analyze the immunogenicity of the strain and showed a pronounced reaction of the immune cells to a high amount of the bacteria within six hours. This result indicates that modulation of cellular immune response to metabolically active bacterial cells is not mandatory for the survival and wide distribution of these microorganisms in the hemolymph of numerous amphipod individuals.


Assuntos
Anfípodes/imunologia , Anfípodes/microbiologia , Imunidade Celular , Pseudomonas/fisiologia , Animais , Hemócitos , Hemolinfa/citologia , Hemolinfa/microbiologia , Lagos , Sibéria
17.
Sci Total Environ ; 763: 143008, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187699

RESUMO

The ancient Lake Baikal is the largest source of liquid freshwater on Earth and home to a unique fauna. Several hundred mostly cold-adapted endemic amphipod species inhabit Baikal, an ecosystem that is already being influenced by global change. In this study, we characterized the core proteome and heat stress-induced changes in a temperature-tolerant endemic amphipod, Eulimnogammarus cyaneus, using a proteogenomic approach (PRIDE dataset PXD013237) to unravel the molecular mechanisms of the observed adverse effects. As males were previously found to be much more tolerant to thermal stress, we placed special emphasis on differences between the sexes. For both sexes, we observed adaption of energy metabolism, cytoskeleton, lipid, and carbohydrate metabolism upon heat stress. In contrast, significant differences were determined in the molecular chaperone response. Females from the control conditions possessed significantly higher levels of heat shock proteins (HSP70, HSPb1, Hsc70-3), which, in contrast to males, were not further increased in response to heat stress. The inability of females to further increase heat shock protein synthesis in response to temperature stress may be due to sex-specific processes, such as egg production, requiring a large proportion of the available energy. As ovigerous females synthesize generally higher amounts of protein, they also need higher levels of molecular chaperones for the folding of these new proteins. Thus, the higher sensitivity of females to heat shock may be due to the lack of molecular chaperone molecules to counteract the heat-induced protein denaturation.


Assuntos
Anfípodes , Animais , Ecossistema , Proteínas de Choque Térmico HSP70 , Resposta ao Choque Térmico , Lagos , Proteômica
18.
Sci Rep ; 11(1): 4562, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633174

RESUMO

Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6-23.6 °C; 0.8 °C d-1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6-3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.


Assuntos
Adaptação Biológica , Anfípodes/fisiologia , Comportamento Animal , Regulação da Temperatura Corporal , Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Aclimatação , Animais , Geografia , Especificidade da Espécie , Estresse Fisiológico
19.
Polymers (Basel) ; 11(8)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357585

RESUMO

Layer-by-layer assembled microcapsules are promising carriers for the delivery of various pharmaceutical and sensing substances into specific organs of different animals, but their utility in vivo inside such an important group as crustaceans remains poorly explored. In the current study, we analyzed several significant aspects of the application of fluorescent microcapsules covered by polyethylene glycol (PEG) inside the crustacean circulatory system, using the example of the amphipod Eulimnogammarus verrucosus. In particular, we explored the distribution dynamics of visible microcapsules after injection into the main hemolymph vessel; analyzed the most significant features of E. verrucosus autofluorescence; monitored amphipod mortality and biochemical markers of stress response after microcapsule injection, as well as the healing of the injection wound; and finally, we studied the immune response to the microcapsules. The visibility of microcapsules decreased with time, however, the central hemolymph vessel was confirmed to be the most promising organ for detecting the spectral signal of implanted microencapsulated fluorescent probes. One million injected microcapsules (sufficient for detecting stable fluorescence during the first hours after injection) showed no toxicity for six weeks, but in vitro amphipod immune cells recognize the PEG-coated microcapsules as foreign bodies and try to isolate them by 12 h after contact.

20.
Biol Open ; 7(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305467

RESUMO

The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA