RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited effective treatment options, potentiating the importance of uncovering novel drug targets. Here, we target cleavage and polyadenylation specificity factor 3 (CPSF3), the 3' endonuclease that catalyzes mRNA cleavage during polyadenylation and histone mRNA processing. We find that CPSF3 is highly expressed in PDAC and is associated with poor prognosis. CPSF3 knockdown blocks PDAC cell proliferation and colony formation in vitro and tumor growth in vivo. Chemical inhibition of CPSF3 by the small molecule JTE-607 also attenuates PDAC cell proliferation and colony formation, while it has no effect on cell proliferation of nontransformed immortalized control pancreatic cells. Mechanistically, JTE-607 induces transcriptional readthrough in replication-dependent histones, reduces core histone expression, destabilizes chromatin structure, and arrests cells in the S-phase of the cell cycle. Therefore, CPSF3 represents a potential therapeutic target for the treatment of PDAC.
Assuntos
Histonas , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
DNA-targeting drugs are widely used for anti-cancer treatment. Many of these drugs cause different types of DNA damage, i.e. alterations in the chemical structure of DNA molecule. However, molecules binding to DNA may also interfere with DNA packing into chromatin. Interestingly, some molecules do not cause any changes in DNA chemical structure but interfere with DNA binding to histones and nucleosome wrapping. This results in histone loss from chromatin and destabilization of nucleosomes, a phenomenon that we call chromatin damage. Although the cellular response to DNA damage is well-studied, the consequences of chromatin damage are not. Moreover, many drugs used to study DNA damage also cause chromatin damage, therefore there is no clarity on which effects are caused by DNA or chromatin damage. In this study, we aimed to clarify this issue. We treated normal and tumor cells with bleomycin, nuclease mimicking drug which cut predominantly nucleosome-free DNA and therefore causes DNA damage in the form of DNA breaks, and CBL0137, which causes chromatin damage without direct DNA damage. We describe similarities and differences between the consequences of DNA and chromatin damage. Both agents were more toxic for tumor than normal cells, but while DNA damage causes senescence in both normal and tumor cells, chromatin damage does not. Both agents activated p53, but chromatin damage leads to the accumulation of higher levels of unmodified p53, which transcriptional activity was similar to or lower than that of p53 activated by DNA damage. Most importantly, we found that while transcriptional changes caused by DNA damage are limited by p53-dependent activation of a small number of p53 targets, chromatin damage activated many folds more genes in p53 independent manner.
Assuntos
Cromatina , Dano ao DNA , Cromatina/genética , DNA/genética , DNA/metabolismo , Histonas/metabolismo , Nucleossomos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
PURPOSE: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma. METHODS: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice. RESULTS: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy. CONCLUSIONS: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.
RESUMO
Preservation of nucleosomes during replication has been extensively studied, while the maintenance of nucleosomes during transcription has gotten less attention. The histone chaperone FACT has a role in transcription elongation, although whether it disassembles or assembles nucleosomes during this process is unclear. To elucidate the function of FACT in mammals, we deleted the Ssrp1 subunit of FACT in adult mice. FACT loss is lethal, possibly due to the loss of the earliest progenitors in bone marrow and intestine, while more differentiated cells are not affected. Using cells isolated from several tissues, we show that FACT loss reduces the viability of stem cells but not of cells differentiated in vitro. FACT depletion increases chromatin accessibility in a transcription-dependent manner in adipose mesenchymal stem cells, indicating that nucleosomes are lost in these cells during transcription in the absence of FACT. We also observe activation of interferon (IFN) signaling and the accumulation of immunocytes in organs sensitive to FACT loss. Our data indicate that FACT maintains chromatin integrity during transcription in mammalian adult stem cells, suggesting that chromatin transcription in stem cells and differentiated cells is different.
Assuntos
Proteínas de Grupo de Alta Mobilidade , Nucleossomos , Animais , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mamíferos/metabolismo , Camundongos , Células-Tronco/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genéticaRESUMO
Phenotypic plasticity is a crucial feature of aggressive cancer, providing the means for cancer progression. Stochastic changes in tumor cell transcriptional programs increase the chances of survival under any condition. I hypothesize that unstable chromatin permits stochastic transitions between transcriptional programs in aggressive cancers and supports non-genetic heterogeneity of tumor cells as a basis for their adaptability. I present a mechanistic model for unstable chromatin which includes destabilized nucleosomes, mobile chromatin fibers and random enhancer-promoter contacts, resulting in stochastic transcription. I suggest potential markers for "unsettled" chromatin in tumors associated with poor prognosis. Although many of the characteristics of unstable chromatin have been described, they were mostly used to explain changes in the transcription of individual genes. I discuss approaches to evaluate the role of unstable chromatin in non-genetic tumor cell heterogeneity and suggest using the degree of chromatin instability and transcriptional noise in tumor cells to predict cancer aggressiveness.
Assuntos
Cromatina , Neoplasias , Cromatina/genética , Humanos , Neoplasias/genética , Nucleossomos/genética , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.
Assuntos
Interferon-alfa , Interferons , Animais , Antivirais/farmacologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Interferons/genética , Camundongos , Poli I-C/farmacologiaRESUMO
Curaxins are small molecules that bind genomic DNA and interfere with DNA-histone interactions leading to the loss of histones and decondensation of chromatin. We named this phenomenon 'chromatin damage'. Curaxins demonstrated anti-cancer activity in multiple pre-clinical tumor models. Here, we present data which reveals, for the first time, a role for the immune system in the anti-cancer effects of curaxins. Using the lead curaxin, CBL0137, we observed elevated expression of several group of genes in CBL0137-treated tumor cells including interferon sensitive genes, MHC molecules, some embryo-specific antigens suggesting that CBL0137 increases tumor cell immunogenicity and improves recognition of tumor cells by the immune system. In support of this, we found that the anti-tumor activity of CBL0137 was reduced in immune deficient SCID mice when compared to immune competent mice. Anti-tumor activity of CBL0137 was abrogated in CD8+ T cell depleted mice but only partially lost when natural killer or CD4+ T cells were depleted. Further support for a key role for the immune system in the anti-tumor activity of CBL0137 is evidenced by an increased antigen-specific effector CD8+ T cell and NK cell response, and an increased ratio of effector T cells to Tregs in the tumor and spleen. CBL0137 also elevated the number of CXCR3-expressing CTLs in the tumor and the level of interferon-γ-inducible protein 10 (IP-10) in serum, suggesting IP-10/CXCR3 controls CBL0137-elicited recruitment of effector CTLs to tumors. Our collective data underscores a previously unrecognized role for both innate and adaptive immunity in the anti-tumor activity of curaxins.
Assuntos
Carbazóis/farmacologia , Cromatina/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Imunidade/imunologia , Animais , Apoptose , Proliferação de Células , Quimiocinas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In this essay, I propose that DNA-binding anti-cancer drugs work more via chromatin disruption than DNA damage. Success of long-awaited drugs targeting cancer-specific drivers is limited by the heterogeneity of tumors. Therefore, chemotherapy acting via universal targets (e.g., DNA) is still the mainstream treatment for cancer. Nevertheless, the problem with targeting DNA is insufficient efficacy due to high toxicity. I propose that this problem stems from the presumption that DNA damage is critical for the anti-cancer activity of these drugs. DNA in cells exists as chromatin, and many DNA-targeting drugs alter chromatin structure by destabilizing nucleosomes and inducing histone eviction from chromatin. This effect has been largely ignored because DNA damage is seen as the major reason for anti-cancer activity. I discuss how DNA-binding molecules destabilize chromatin, why this effect is more toxic to tumoral than normal cells, and why cells die as a result of chromatin destabilization.
Assuntos
Antineoplásicos/uso terapêutico , Cromatina/metabolismo , Dano ao DNA , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Cromatina/efeitos dos fármacos , DNA/efeitos dos fármacos , Humanos , Neoplasias/metabolismoRESUMO
Around 10% of acute leukemias harbor a rearrangement of the MLL/KMT2A gene, and the presence of this translocation results in a highly aggressive, therapy-resistant leukemia subtype with survival rates below 50%. There is a high unmet need to identify safer and more potent therapies for MLL-rearranged (MLL-r) leukemia that can be combined with established chemotherapeutics to decrease treatment-related toxicities. The curaxin, CBL0137, has demonstrated nongenotoxic anticancer and chemopotentiating effects in a number of preclinical cancer models and is currently in adult Phase I clinical trials for solid tumors and hematological malignancies. The aim of our study was to investigate whether CBL0137 has potential as a therapeutic and chemopotentiating compound in MLL-r leukemia through a comprehensive analysis of its efficacy in preclinical models of the disease. CBL0137 decreased the viability of a panel of MLL-r leukemia cell lines (n = 12) and xenograft cells derived from patients with MLL-r acute lymphoblastic leukemia (ALL, n = 3) in vitro with submicromolar IC50s. The small molecule drug was well-tolerated in vivo and significantly reduced leukemia burden in a subcutaneous MV4;11 MLL-r acute myeloid leukemia model and in patient-derived xenograft models of MLL-r ALL (n = 5). The in vivo efficacy of standard of care drugs used in remission induction for pediatric ALL was also potentiated by CBL0137. CBL0137 exerted its anticancer effect by trapping Facilitator of Chromatin Transcription (FACT) into chromatin, activating the p53 pathway and inducing an Interferon response. Our findings support further preclinical evaluation of CBL0137 as a new approach for the treatment of MLL-r leukemia.
Assuntos
Antineoplásicos/farmacologia , Carbazóis/farmacologia , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Antineoplásicos/uso terapêutico , Apoptose/genética , Carbazóis/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Estimativa de Kaplan-Meier , Leucemia Aguda Bifenotípica/diagnóstico , Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/mortalidade , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Elongação da Transcrição/genética , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Woodchucks (Marmota monax) are a well-accepted animal model for the investigation of spontaneous hepatocellular carcinoma (HCC). As HCC tumors obtain nutrient blood supply exclusively from the hepatic artery, hepatic artery infusion (HAI) has been applied to HCC. However, there is a scarcity of experimental animal models to standardize drug regimens and examine novel agents. The purpose of this study was to establish an HAI model in woodchucks. MATERIALS AND METHODS: HAI ports were placed in the gastroduodenal artery (GDA) of 11 woodchucks. The ports were infused with either a vehicle (dextrose 5% in water) or an experimental drug, CBL0137, once a week for 3 wk. Technical success rates, anatomical variation, morbidity and mortality, and tumor responses between groups were analyzed. RESULTS: The GDA access was feasible and reproducible in all woodchucks (11/11). The average operation time was 95 ± 20 min with no increase in the levels of liver enzymes detected from either infusate. The most common morbidity of CBL0137 therapy was anorexia after surgery. One woodchuck died due to hemorrhage at the gallbladder removal site from hepatic coagulopathy. Significantly higher CBL0137 concentrations were measured in the liver compared with blood after each HAI. Tumor growth was suppressed after multiple CBL0137 HAI treatments which corresponded to greater T cell infiltration and increased tumor cell apoptosis. CONCLUSIONS: HAI via GDA was a feasible and reproducible approach with low morbidity and mortality in woodchucks. The described techniques serve as a reliable platform for the identification and characterization of therapeutics for HCC.
Assuntos
Carbazóis/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Artéria Hepática/cirurgia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Marmota , Variação Anatômica , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Artéria Hepática/anatomia & histologia , MasculinoRESUMO
A cure for human immunodeficiency virus type-1 (HIV-1) has been hampered by the limitation of current combination antiretroviral therapy (cART) to address the latent reservoirs in HIV-1 patients. One strategy proposed to eradicate these reservoirs is the "shock and kill" approach, where latency-reversing agents (LRAs) are used to reactivate and promote viral cell death and/or immune killing of reactivated cells. Here, we report that curaxin CBL0137, an antitumor compound, can potentiate tumor necrosis factor-α-mediated reactivation of latently infected HIV-1cell lines. Additionally, the single use of CBL0137 is sufficient to reactivate HIV-1 latent reservoirs in peripheral mononuclear cells (PBMCs) isolated from HIV-1 positive, cART-treated, aviremic patients. Thus, CBL0137 possesses capabilities as a LRA and could be considered for the "shock and kill" approach.
Assuntos
Carbazóis/farmacologia , Infecções por HIV/virologia , HIV-1/fisiologia , Ativação Viral/efeitos dos fármacos , Latência Viral , Células Cultivadas , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention.
Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/genética , Células Eucarióticas/metabolismo , Conformação de Ácido Nucleico , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Humanos , Repetições de Microssatélites , Modelos Biológicos , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Subunidades Proteicas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
The successful colonization of the majority of the population by human cytomegalovirus is a direct result of the virus's ability to establish and, more specifically, reactivate from latency. The underlying cellular factors involved in viral reactivation remain unknown. Here, we show that the host complexfacilitateschromatintranscription (FACT) binds to the major immediate early promoter (MIEP) and that inhibition of this complex reduces MIEP transactivation, thus inhibiting viral reactivation.
Assuntos
Citomegalovirus/fisiologia , Genes Precoces , Proteínas Virais/antagonistas & inibidores , Replicação Viral , Citomegalovirus/genética , Fibroblastos , Regulação Viral da Expressão Gênica , Humanos , Modelos Biológicos , Regiões Promotoras Genéticas , Transcrição Gênica , Proteínas Virais/metabolismo , Latência Viral , Liberação de VírusRESUMO
Our functional genomic RNAi screens have identified the protein components of the FACT (facilitates chromatin transcription) complex, SUPT16H and SSRP1, as top host factors that negatively regulate HIV-1 replication. FACT interacts specifically with histones H2A/H2B to affect assembly and disassembly of nucleosomes, as well as transcription elongation. We further investigated the suppressive role of FACT proteins in HIV-1 transcription. First, depletion of SUPT16H or SSRP1 protein enhances Tat-mediated HIV-1 LTR (long terminal repeat) promoter activity. Second, HIV-1 Tat interacts with SUPT16H but not SSRP1 protein. However, both SUPT16H and SSRP1 are recruited to LTR promoter. Third, the presence of SUPT16H interferes with the association of Cyclin T1 (CCNT1), a subunit of P-TEFb, with the Tat-LTR axis. Removing inhibitory mechanisms to permit HIV-1 transcription is an initial and key regulatory step to reverse post-integrated latent HIV-1 proviruses for purging of reservoir cells. We therefore evaluated the role of FACT proteins in HIV-1 latency and reactivation. Depletion of SUPT16H or SSRP1 protein affects both HIV-1 transcriptional initiation and elongation and spontaneously reverses latent HIV-1 in U1/HIV and J-LAT cells. Similar effects were observed with a primary CD4+ T cell model of HIV-1 latency. FACT proteins also interfere with HTLV-1 Tax-LTR-mediated transcription and viral latency, indicating that they may act as general transcriptional suppressors for retroviruses. We conclude that FACT proteins SUPT16H and SSRP1 play a key role in suppressing HIV-1 transcription and promoting viral latency, which may serve as promising gene targets for developing novel HIV-1 latency-reversing agents.
Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , HIV-1/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Latência Viral/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Ciclina T/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HEK293 , Repetição Terminal Longa de HIV , HIV-1/genética , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Modelos Biológicos , Fator B de Elongação Transcricional Positiva/fisiologia , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/genética , Latência Viral/genéticaRESUMO
Widespread resistance to most antimalaria drugs in use has prompted the search for novel candidate compounds with activity against Plasmodium asexual blood stages to be developed for treatment. In addition, the current malaria eradication programs require the development of drugs that are effective against all stages of the parasite life cycle. We have analyzed the antimalarial properties of xenomycins, a novel subclass of small molecule compounds initially isolated for anticancer activity and similarity to quinacrine in biological effects on mammalian cells. In vitro studies show potent activity of Xenomycins against Plasmodium falciparum. Oral administration of xenomycins in mouse models result in effective clearance of liver and blood asexual and sexual stages, as well as effective inhibition of transmission to mosquitoes. These characteristics position xenomycins as antimalarial candidates with potential activity in prevention, treatment and elimination of this disease.
Assuntos
Antimaláricos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Feminino , Masculino , Camundongos , Células NIH 3T3 , Plasmodium/crescimento & desenvolvimentoRESUMO
The phenotypic plasticity of cancer cells has recently emerged as an important factor of treatment failure. The mechanisms of phenotypic plasticity are not fully understood. One of the hypotheses is that the degree of chromatin accessibility defines the easiness of cell transitions between different phenotypes. To test this, a method to compare overall chromatin accessibility between cells in a population or between cell populations is needed. We propose to measure chromatin accessibility by fluorescence signal from nuclei of cells stained with DNA binding fluorescent molecules. This method is based on the observations that small molecules bind nucleosome-free DNA more easily than nucleosomal DNA. Thus, nuclear fluorescence is proportional to the amount of nucleosome-free DNA, serving as a measure of chromatin accessibility. We optimized the method using several DNA intercalators and minor groove binders and known chromatin-modulating agents and demonstrated that chromatin accessibility is increased upon oncogene-induced transformation and further in tumor cells.
RESUMO
Recent genome-wide analyses identified chromatin modifiers as one of the most frequently mutated classes of genes across all cancers. However, chemotherapies developed for cancers involving DNA damage remain the standard of care for chromatin-deranged malignancies. In this review we address this conundrum by establishing the concept of 'chromatin damage': the non-genetic damage to protein-DNA interactions induced by certain small molecules. We highlight anthracyclines, a class of chemotherapeutic agents ubiquitously applied in oncology, as an example of overlooked chromatin-targeting agents. We discuss our current understanding of this phenomenon and explore emerging chromatin-damaging agents as a basis for further studies to maximize their impact in modern cancer treatment.
Assuntos
Antineoplásicos , Cromatina , Dano ao DNA , Neoplasias , Humanos , Cromatina/metabolismo , Cromatina/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Dano ao DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular/métodos , Antraciclinas/uso terapêutico , Antraciclinas/farmacologia , AnimaisRESUMO
Purpose: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma. Methods: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice. Results: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy. Conclusions: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.
RESUMO
The combination of CDK4/6 and MEK inhibition as a therapeutic strategy has shown promise in various cancer models, particularly in those harboring RAS mutations. An initial high-throughput drug screen identified a high synergy between the CDK4/6 inhibitor palbociclib and the MEK inhibitor trametinib when used in combination in soft tissue sarcomas. In RAS mutant models, combination treatment with palbociclib and trametinib induced significant G1 cell cycle arrest, resulting in a marked reduction in cell proliferation and growth. CRISPR-mediated RB1 depletion resulted in a decreased response to CDK4/6 and MEK inhibition, which was validated in both cell culture and xenograft models. Beyond its cell cycle inhibitory effects, pathway enrichment analysis revealed the robust activation of interferon pathways upon CDK4/6 and MEK inhibition. This induction of gene expression was associated with the upregulation of retroviral elements. The TBK1(TANK-binding kinase 1) inhibitor GSK8612 selectively blocked the induction of interferon-related genes induced by palbociclib and trametinib treatment, and highlighted the separable epigenetic responses elicited by combined CDK4/6 and MEK inhibition. Together, these findings provide key mechanistic insights into the therapeutic potential of CDK4/6 and MEK inhibition in soft tissue sarcoma.
RESUMO
BACKGROUND: Many plant secondary metabolites (PSMs) were shown to intercalate into DNA helix or interact with DNA grooves. This may influence histone-DNA interactions changeing chromatin structure and genome functioning. METHODS: Nucleosome stability and linker histone H1.2, H1.4 and H1.5 localizations were studied in HeLa cells after the treatment with 15 PSMs, which are DNA-binders and possess anticancer activity according to published data. Chromatin remodeler CBL0137 was used as a control. Effects of PSMs were studied using fluorescent microscopy, flowcytometry, quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), western-blotting. RESULTS: We showed that 1-hour treatment with CBL0137 strongly inhibited DNA synthesis and caused intensive linker histone depletion consistent with nucleosome destabilization. None of PSMs caused nucleosome destabilization, while most of them demonstrated significant influence on linker histone localizations. In particular, cell treatment with 11 PSMs at non-toxic concentrations induced significant translocation of the histone H1.5 to nucleoli and most of PSMs caused depletion of the histones H1.2 and H1.4 from chromatin fraction. Curcumin, resveratrol, berberine, naringenin, and quercetin caused significant redistribution of all three variants of the studied linker histones showing some overlap of PSM effects on linker histone DNA-binding. We demonstrated that PSMs, which induced the most significant redistribution of the histone H1.5 (berberine, curcumin and naringenin), influence the proportion of cells synthesizing DNA, expressing or non-expressing cyclin B and influence cell cycle distribution. Berberine induction of H1.5 translocations to nucleoli was shown to occur independently on the phases of cell cycle (metaphase was not analyzed). CONCLUSIONS: For the first time we revealed PSM influence on linker histone location in cell nuclei that opens a new direction of PSM research as anticancer agents.