RESUMO
Nitrosamines and semi-volatile organic compounds (SVOCs) are carcinogenic contaminants in water and biological matrices. Conventional analytical methods often struggle to detect trace concentrations due to poor extraction efficacies. This study presents a novel, low-cost, in-syringe-assisted fast extraction cum cleanup technique coupled with GC-FID for monitoring four nitrosamines and two SVOCs in drinking water and human urine samples to measure the contamination and exposure levels. This extraction protocol combines a novel green in-syringe liquid-liquid extraction step using dimethyl carbonate as the green extraction solvent, coupled with a semi-automated solid-phase extraction cleanup process. Then, the final extractant is analyzed using gas chromatography-flame ionization detection (GC-FID) for monitoring. The method demonstrated excellent linearity (R2 > 0.998) between 1.5 and 500 ng mLâ»1 for all six target compounds. Detection limits ranged from 1.0 to 2.0 ng mLâ»1. Extraction recoveries were between 87 and 105% for both urine samples and water samples. Intra-day and inter-day precision were below 9% RSD. The blue applicability grade index evaluation scored 70.0, indicating good practical applicability. The developed analytical protocol offers a sensitive, accurate, low-cost, rapid, and environmentally friendly method for simultaneously quantifying multiple nitrosamines and SVOCs in environmental and human samples. Its performance characteristics and sustainability metrics suggest the potential for broad application in monitoring and exposure studies.
Assuntos
Nitrosaminas , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Humanos , Nitrosaminas/urina , Compostos Orgânicos Voláteis/urina , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina , Cromatografia Gasosa/métodos , Química Verde/métodos , Extração em Fase Sólida/métodos , Água Potável/química , Limite de Detecção , Monitoramento Ambiental/métodos , Extração Líquido-Líquido/métodosRESUMO
Nicotine is the most prominent psychoactive/addictive chemical substance consumed worldwide among young players in team sports. Moreover, urinary nicotine discharge and nicotine-based products disposal in environmental waters has been unavoidable in recent years. Therefore, sensitive monitoring of nicotine content in environmental waters and human urine samples is essential. In this study, we developed a miniaturized novel green, low-cost, sensitive, in-syringe-based semi-automated fast drug extraction (FaDEx) protocol coupled with gas chromatography-flame ionization detection (GC-FID) for the efficient environmental and bio-monitoring of nicotine in aqueous samples. The FaDEx method consists of two steps; firstly, the target analyte was extracted using dimethyl carbonate (a green solvent) and extraction salts. After that, the extraction solvent was passed automatically through the solid-phase extraction cartridge at a constant flow rate for the cleanup process to achieve the sensitive nicotine analysis by GC-FID. Under optimized experimental conditions, the developed method showed excellent linearity over the concentration ranges between 20-2000 ng mL-1 with a correlation coefficient >0.99. The detection and quantification limits were 4 and 20 ng mL-1, respectively. The presented method was applied to monitor and assess nicotine exposure in sports-persons' urine and environmental water samples. The method accuracy and precision in terms of relative recovery and relative standard deviation (for triplicate analysis) were 85.4-110.2% and ≤8%, respectively. Finally, the impact of our procedure on the environment from a green analytical chemistry view was assessed using a novel metric system called AGREE, and obtained the greenness score of 0.87, indicating its an efficient alternative green analytical protocol for routine environmental and bio-monitoring of nicotine in environmental and biological samples.
Assuntos
Nicotina , Água , Humanos , Nicotina/análise , Monitoramento Biológico , Limite de Detecção , Extração em Fase Sólida/métodos , Solventes , Psicotrópicos/análiseRESUMO
In this work, a fast mycotoxin extraction (FaMEx) technique was developed for the rapid identification and quantification of carcinogenic ochratoxin-A (OTA) in food (coffee and tea) and agricultural soil samples using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection. The FaMEx technique advancement is based on two plastic syringes integrated setup for rapid extraction and its subsequent controlled clean-up process. In the extraction process, a 0.25-g sample and extraction solvent were added to the first syringe barrel for the vortex-based extraction. Then, the extraction syringe was connected to a clean-up syringe (pre-packed with C18, activated carbon, and MgSO4) with a syringe filter. Afterward, the whole set-up was placed in an automated programmable mechanical set-up for controlled elution. To enhance FaMEx technology performance, the various influencing sample pretreatment parameters were optimized. Furthermore, the developed FaMEx method indicated excellent linearity (0.9998 and 0.9996 for coffee/tea and soil) with highly sensitive detection (0.30 and 0.29 ng/mL for coffee/tea and soil) and quantification limits (1.0 and 0.96 for coffee/tea and soil), which is lower than the toxicity limit compliant with the European Union regulation for OTA (5 ng/g). The method showed acceptable relative recovery (84.48 to 100.59%) with <7.34% of relative standard deviation for evaluated real samples, and the matrix effects were calculated as <-13.77% for coffee/tea and -9.7 for soil samples. The obtained results revealed that the developed semi-automated FaMEx/UHPLC-MS/MS technique is easy, fast, low-cost, sensitive, and precise for mycotoxin detection in food and environmental samples.
Assuntos
Micotoxinas , Ocratoxinas , Cromatografia Líquida de Alta Pressão/métodos , Micotoxinas/análise , Ocratoxinas/análise , Espectrometria de Massas em Tandem/métodos , Café/química , Seringas , Solo , Chá/químicaRESUMO
Identifying the risk of ochratoxin A in our daily food has become fundamental because of its toxicity. In this work, we report a novel semi-automated in-syringe-based fast mycotoxin extraction (IS-FaMEx) technique coupled with direct-injection electrospray-ionization tandem mass spectrometer (ESI-MS/MS) detection for the quantification of ochratoxin A in coffee and tea samples. Under the optimized conditions, the results reveal that the developed method's linearity was more remarkable, with a correlation coefficient of > 0.999 and > 92% extraction recovery with a precision of 6%. The detection and quantification limits for ochratoxin A were 0.2 and 0.8 ng g-1 for the developed method, respectively, which is lower than the European Union regulatory limit of toxicity for ochratoxin-A (5 ng g-1) in coffee. Furthermore, the newly developed modified IS-FaMEx-ESI-MS/MS exhibited lower signal suppression of 8% with a good green metric score of 0.64. In addition, the IS-FaMEx-ESI-MS/MS showed good extraction recovery, matrix elimination, good detection, and quantification limits with high accuracy and precision due to the fewer extraction steps with semi-automation. Therefore, the presented method can be applied as a potential methodology for the detection of mycotoxins in food products for food safety and quality control purposes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05733-z.
RESUMO
Dolutegravir (DLG) has become a distinctive first-line antiretroviral therapy for the treatment of HIV in most countries due to its affordability, high efficacy, and low drug-drug interactions. However, the evaluation of genotoxic impurities (GTIs) in DLG and their toxicity assessment has not been explored thoroughly. Thus, in this study, a simple, fast, and selective analytical methodology was developed for the identification and determination of 7 GTIs in the comprehensive, explicit route of synthesis for the dolutegravir sodium (DLG-Na) drug. A facile, fast ultrasonication-assisted liquid-liquid extraction procedure was adapted to isolate the GTIs in DLG-Na and then analyzed using the gas chromatography (GC)-electron impact (EI)/mass spectrometer (MS) quantification (using selective ion monitoring mode) technique. This EI-GC/MS method was validated as per the current requirements of ICH Q2 (R1) guidelines. Under optimal method conditions, excellent linearities were achieved with R between 0.9959 and 0.9995, and high sensitivity was obtained in terms of detection limits (LOD) between 0.15 to 0.63 µg/g, and quantification limits (LOQ) between 0.45 to 1.66 µg/g for the seven GTIs in DLG. The obtained recoveries ranged from 98.2 to 104.3 % at LOQ, 15 µg/g, and 18 µg/g concentration levels (maximum daily dose of 100 mg). This developed and validated method is rapid, easy to adopt, specific, sensitive, and accurate in estimating the seven GTIs in a relatively complex sodium matrix of the DLG-Na drug moiety. As a method application, two different manufactured samples of DLG-Na drug substances were analyzed for the fate of the GTIs and drug safety for the intended dosage applications. Moreover, an in-silico QSAR toxicity prediction assessment was carried out to prove scientifically the potential GTI nature of each impurity from the alerting functional groups.
Assuntos
Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Compostos Heterocíclicos com 3 Anéis , Limite de Detecção , Oxazinas , Piperazinas , Piridonas , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/análise , Piperazinas/química , Piperazinas/análise , Piridonas/química , Piridonas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oxazinas/química , Reprodutibilidade dos Testes , Modelos Lineares , Mutagênicos/análise , Fármacos Anti-HIV/análise , Fármacos Anti-HIV/química , Extração Líquido-Líquido/métodos , Sonicação/métodos , Simulação por Computador , HumanosRESUMO
Cooking oil fumes (COFs) comprised of a mixture of cancer-causing volatile organic aldehydes (VOAs), particularly trans, trans-2,4-decadienal (t,t-DDE), 4-hydroxy-hexenal (4-HHE), and 4-hydroxy-nonenal (4-HNE). Monitoring toxic VOAs levels in people exposed to different cooking conditions is vital to predicting the cancer risk. For this purpose, we developed a fast tissue extraction (FaTEx) technique combined with UHPLC-MS/MS to monitor three toxic VOAs in mice lung tissue samples. FaTEx pre-treatment protocol was developed by combining two syringes for extraction and clean-up process. The various procedural steps affecting the FaTEx sample pre-treatment process were optimized to enhance the target VOAs' extraction efficiency from the sample matrix. Under the optimal experimental conditions, results exhibit good correlation coefficient values > 0.99, detection limits were between 0.5-3 ng/g, quantification limits were between 1-10 ng/g, and the matrix effect was <18.1%. Furthermore, the extraction recovery values of the spiked tissue exhibited between 88.9-109.6% with <8.6% of RSD. Cooking oil fume (containing t,t-DDE) treated mice at various time durations were sacrificed to validate the developed technique, and it was found that t,t-DDE concentrations were from 14.8 to 33.8 µg/g. The obtained results were found to be a fast, reliable, and semi-automated sample pre-treatment technique with good extraction efficiency, trace level detection limit, and less matrix effect. Therefore, this method can be applied as a potential analytical method to determine the VOAs in humans exposed to long-term cooking oil fumes.
Assuntos
Aldeídos , Neoplasias , Humanos , Camundongos , Animais , Aldeídos/toxicidade , Aldeídos/análise , Espectrometria de Massas em Tandem , Gases , Pulmão/química , CulináriaRESUMO
Assessing the impact of human exposure to environmental toxicants is often crucial to biomonitoring the exposed dose. In this work, we report a novel fast urinary metabolites extraction (FaUMEx) technique coupled with UHPLC-MS/MS analysis for the highly sensitive and simultaneous biomonitoring of the five major urinary metabolites (thiodiglycolic acid, s-phenylmercapturic acid, t,t-muconic acid, mandelic acid, and phenyl glyoxylic acid) of common volatile organic compounds' (VOCs) exposure (vinyl chloride, benzene, styrene, and ethylbenzene) in human. FaUMEx technique comprises of two-steps, liquid-liquid microextraction was performed first in an extraction syringe using 1 mL of methanol (pH 3) as an extraction solvent and then, the extractant was passed through a clean-up syringe (pre-packed-with various sorbents including 500 mg anhydrous MgSO4, 50 mg C18, and 50 mg SiO2) to obtain the high order of matrice clean-up and preconcentration efficiency. The developed method displayed excellent linearity, and the correlation coefficients were >0.998 for all the target metabolites with detection and quantification limits of 0.02-0.24 ng mL-1 and 0.05-0.72 ng mL-1, respectively. Furthermore, the matrix effects were < ±5%, and inter and intra-day precision were <9%. Moreover, the presented method was applied and validated to real sample analysis for biomonitoring of VOC's exposure levels. The results showed that the developed FaUMEx-UHPLC-MS/MS method is fast, simple, low-cost, low-solvent consumption, high sensitivity with good accuracy and precision for five targeted urinary VOCs' metabolites. Therefore, the presented dual-syringe mode FaUMEx strategy with UHPLC-MS/MS technique can be applied to biomonitoring of various urinary metabolites to assess human exposure to environmental toxicants.
Assuntos
Espectrometria de Massas em Tandem , Compostos Orgânicos Voláteis , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento Biológico , Seringas , Dióxido de SilícioRESUMO
In this study, we demonstrated a novel semi-automated in-syringe-based coagulant-assisted liquid-liquid microextraction (IS-CGA-LLME) as fast mycotoxin extraction (FaMEx) technique coupled with ultra-high-performance liquid chromatography connected with a tandem-mass spectrometer (UHPLC-MS/MS) for the quantification of mycotoxin (Ochratoxin A, OT-A) in coffee and tea samples. IS-CGA-LLME is a three-step extraction process that includes extraction of OT-A from sample matrix using low-volume solvent extraction, then the extractant was cleaned-up using a coagulation process, and finally, the decolorized/matrix removed sample solution was processed for LLME for target analyte's pre-concentration. The final extractant was analyzed using UHPLC-MS/MS for OT-A quantification. Under the optimized experimental conditions, highly sensitive detection and quantification limits were obtained at 0.001 and 0.003 ng g-1 for OT-A with excellent extraction recovery (93-111%) and precision <10%. These results proved that the developed method is a simple, highly sensitive, semi-automated, low-matrix effect and efficient procedure for the determination of mycotoxins in food samples.