RESUMO
Fatty acids are vital for the survival of eukaryotes, but when present in excess can have deleterious consequences. The AMP-activated protein kinase (AMPK) is an important regulator of multiple branches of metabolism. Studies in purified enzyme preparations and cultured cells have shown that AMPK is allosterically activated by small molecules as well as fatty acyl-CoAs through a mechanism involving Ser108 within the regulatory AMPK ß1 isoform. However, the in vivo physiological significance of this residue has not been evaluated. In the current study, we generated mice with a targeted germline knock-in (KI) mutation of AMPKß1 Ser108 to Ala (S108A-KI), which renders the site phospho-deficient. S108A-KI mice had reduced AMPK activity (50 to 75%) in the liver but not in the skeletal muscle. On a chow diet, S108A-KI mice had impairments in exogenous lipid-induced fatty acid oxidation. Studies in mice fed a high-fat diet found that S108A-KI mice had a tendency for greater glucose intolerance and elevated liver triglycerides. Consistent with increased liver triglycerides, livers of S108A-KI mice had reductions in mitochondrial content and respiration that were accompanied by enlarged mitochondria, suggestive of impairments in mitophagy. Subsequent studies in primary hepatocytes found that S108A-KI mice had reductions in palmitate- stimulated Cpt1a and Ppargc1a mRNA, ULK1 phosphorylation and autophagic/mitophagic flux. These data demonstrate an important physiological role of AMPKß1 Ser108 phosphorylation in promoting fatty acid oxidation, mitochondrial biogenesis and autophagy under conditions of high lipid availability. As both ketogenic diets and intermittent fasting increase circulating free fatty acid levels, AMPK activity, mitochondrial biogenesis, and mitophagy, these data suggest a potential unifying mechanism which may be important in mediating these effects.
Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Graxos , Camundongos , Animais , Fosforilação , Ácidos Graxos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Homeostase , Autofagia , Triglicerídeos/metabolismoRESUMO
Exposure to compounds present in petroleum and wastewaters from oil and gas extraction sites in the Alberta Oil Sands Region can impair reproductive health. It has been established that acid extractable organics found in oil sands process-affected water (OSPW) such as naphthenic acids (NA-fraction components; NAFC) can adversely affect reproductive outcomes. We have shown that NAFC exposure results in a significant upregulation of GDF15 in placental trophoblasts, a cellular stress marker known to be involved in human embryonic development and necessary for the maintenance of pregnancy. However, little is known regarding the mechanism(s) underlying NAFC-induced increases in GDF15 production during early placentation. The goal of this study was to examine the effects of NAFC exposure on the regulation of critical transcription factors of GDF15 in extravillous trophoblast cells. Of these transcription factors, inflammatory mediators including prostaglandins have been reported to inhibit proliferation and migration of trophoblast cells in vitro. Hence, the secondary goal of this study was to determine whether inflammation mediated through prostaglandin production is critical to GDF15 secretion. HTR-8/SVneo cells were exposed to an NAFC for 6 and 24 h to assess the expression of key transcriptional regulators, GDF15 secretion, and prostaglandin (PGE2) output. Treatment with NAFC (125 mg/L only) significantly increased GDF15 expression and secretion in association with upregulation of the transcription factors KLF4, EGR1, ATF3 and TP53. Similarly, PTGS2 (i.e. COX2) expression and PGE2 output were significantly increased at the same concentration. However, co-treatment with a COX2 selective antagonist (SC236) only partially blocked the NAFC-induced increase in PGE2 output and did not block GDF15 expression or secretion. These findings suggest that while NAFC may affect GDF15 production, it is not exclusively a result of prostaglandin-mediated inflammation. This study provides new insights into the mechanisms by which NAFC may adversely affect placental trophoblast cell function in mammals.
Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Ácidos Carboxílicos , Ciclo-Oxigenase 2 , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Inflamação , Mamíferos , Placenta , Gravidez , Prostaglandinas , Prostaglandinas E/farmacologia , Fatores de Transcrição , Trofoblastos , ÁguaRESUMO
The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife.
Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Camundongos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Osteogênese , Ácidos Carboxílicos/química , Água/química , OsteoblastosRESUMO
Obesity is a leading cause of morbidity, mortality and health care expenditure whose incidence is rapidly rising across the globe. Although the cause of the obesity epidemic is typically viewed as a product of an increased availability of high calorie foods and/or a reduction in physical activity, there is mounting evidence that exposure to synthetic chemicals in our environment may play an important role. Pesticides, are a class of chemicals whose widespread use has coincided with the global rise of obesity over the past two decades. Importantly, given their lipophilic nature many pesticides have been shown to accumulate with adipose tissue depots, suggesting they may be disrupting the function of white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue to promote obesity and metabolic diseases such as type 2 diabetes. In this review, we discuss epidemiological evidence linking pesticide exposure with body mass index (BMI) and the incidence of diabetes. We then review preclinical studies in rodent models which have directly evaluated the effects of different classes of insecticides and herbicides on obesity and metabolic dysfunction. Lastly, we review studies conducted in adipose tissue cells lines and the purported mechanisms by which pesticides may induce alterations in adipose tissue function. The review of the literature reveals major gaps in our knowledge regarding human exposure to pesticides and our understanding of whether physiologically relevant concentrations promote obesity and elicit alterations in key signaling pathways vital for maintaining adipose tissue metabolism.
Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Praguicidas/toxicidade , Adipogenia/fisiologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Índice de Massa Corporal , Humanos , Doenças Metabólicas/etiologia , Obesidade/etiologiaRESUMO
The discovery of long-acting incretin receptor agonists represents a major stride forward in tackling the dual epidemic of obesity and diabetes. Here we outline the evolution of incretin-based pharmacotherapy, from exendin-4 to the discovery of the multi-incretin hormone receptor agonists that look set to be our next step toward curing diabetes and obesity. We discuss the multiagonists currently in clinical trials and the improvement in efficacy each new generation of these drugs bring. The success of these agents in preclinical models and clinical trials suggests a promising future for multiagonists in the treatment of metabolic diseases, with the most recent glucose-dependent insulinotropic peptide receptor:glucagon-like peptide 1 receptor:glucagon receptor (GIPR:GLP-1R:GCGR) triagonists rivaling the efficacy of bariatric surgery. However, further research is needed to fully understand how these therapies exert their effect on body weight and in the last section we cover open questions about the potential mechanisms of multiagonist drugs, and the understanding of how gut-brain communication can be leveraged to achieve sustained body weight loss without adverse effects.
RESUMO
The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.
Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G , Glucose , Neurônios GABAérgicos/metabolismo , Ingestão de AlimentosRESUMO
Metformin is the most commonly prescribed medication for type 2 diabetes, owing to its glucose-lowering effects, which are mediated through the suppression of hepatic glucose production (reviewed in refs. 1-3). However, in addition to its effects on the liver, metformin reduces appetite and in preclinical models exerts beneficial effects on ageing and a number of diverse diseases (for example, cognitive disorders, cancer, cardiovascular disease) through mechanisms that are not fully understood1-3. Given the high concentration of metformin in the liver and its many beneficial effects beyond glycemic control, we reasoned that metformin may increase the secretion of a hepatocyte-derived endocrine factor that communicates with the central nervous system4. Here we show, using unbiased transcriptomics of mouse hepatocytes and analysis of proteins in human serum, that metformin induces expression and secretion of growth differentiating factor 15 (GDF15). In primary mouse hepatocytes, metformin stimulates the secretion of GDF15 by increasing the expression of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP; also known as DDIT3). In wild-type mice fed a high-fat diet, oral administration of metformin increases serum GDF15 and reduces food intake, body mass, fasting insulin and glucose intolerance; these effects are eliminated in GDF15 null mice. An increase in serum GDF15 is also associated with weight loss in patients with type 2 diabetes who take metformin. Although further studies will be required to determine the tissue source(s) of GDF15 produced in response to metformin in vivo, our data indicate that the therapeutic benefits of metformin on appetite, body mass and serum insulin depend on GDF15.