RESUMO
Linagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor that indirectly elevates the glucagon-like peptide-1 (GLP-1) level. The aim of the present study was to check whether linagliptin has an influence on neurotransmission in rat brain. Rats were acutely and chronically exposed to linagliptin (10 and 20 mg/kg, intraperitoneally (i.p.)). Twenty-four hours later, the striatum and hippocampus were selected for further studies. In neurochemical experiments, using high-performance liquid chromatography with electrochemical detection (HPLC-ED), the concentrations of three major neurotransmitters-dopamine, serotonin and noradrenaline-and their metabolites were measured. The analysis of mRNA expression of dopamine (D1 and D2), serotonin (5-HT-1 and 5-HT-2) and noradrenaline (α1 and α2a) receptors was also investigated using real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) in the same brain areas. Linagliptin has the ability to influence the dopaminergic system. In the striatum, the elevation of dopamine and its metabolites was observed after repeated administration of that linagliptin, and in the hippocampus, a reduction in dopamine metabolism was demonstrated. Acute linagliptin exposure increases the serotonin level in both areas, while after chronic linagliptin administration a tendency for the mRNA expression of serotoninergic receptors (5-HT1A and 5-HT2A) to increase was observed. A single instance of exposure to linagliptin significantly modified the noradrenaline level in the striatum and intensified noradrenaline turnover in the hippocampus. The recognition of the interactions in the brain between DPP-4 inhibitors and neurotransmitters and/or receptors is a crucial step for finding novel discoveries in the pharmacology of DPP-4 inhibitors and raises hope for further applications of DPP-4 inhibitors in clinical practices.
Assuntos
Inibidores da Dipeptidil Peptidase IV , Linagliptina , Ratos , Animais , Linagliptina/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Serotonina , Dopamina , Norepinefrina , Dipeptidil Peptidase 4/metabolismo , Hipocampo/metabolismo , Neurotransmissores , RNA MensageiroRESUMO
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Criança , Humanos , Fluoretos/metabolismo , Sistema Nervoso Central/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Barreira Hematoencefálica/metabolismoRESUMO
Burns and their treatment are a significant medical problem. The loss of the physical barrier function of the skin opens the door to microbial invasion and can lead to infection. The repair process of the damage caused by the burn is impaired due to the enhanced loss of fluids and minerals through the burn wound, the onset of hypermetabolism with the concomitant disruption of nutrient supply, and derangements in the endocrine system. In addition, the initiated inflammatory and free radical processes drive the progression of oxidative stress, the inhibition of which largely depends on an adequate supply of antioxidants and minerals. Clinical experience and research provide more and more data to make the treatment of patients with thermal injury increasingly effective. The publication discusses disorders occurring in patients after thermal injury and the methods used at various stages of treatment.
Assuntos
Queimaduras , Humanos , Queimaduras/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo , Pele/metabolismo , Sistema EndócrinoRESUMO
The exposure of humans to fluorine is connected with its presence in the air, food and water. It is well known that fluorides even at a low concentration but with long time exposure accumulate in the body and lead to numerous metabolic disorders. Fluoride is recognised as a factor modulating the energy metabolism of cells. This interaction is of particular importance in muscle cells, which are cells with high metabolic activity related to the metabolism of glucose and glycogen. In someone suffering from chronic fluoride poisoning, frequent symptoms are chronic fatigue not relieved by extra sleep or rest, muscular weakness, muscle spasms, involuntary twitching. The aim of this study was to examine the effect of fluorine at concentrations determined in blood of people environmentally exposed to fluorides on activity and expression of enzymes taking part in metabolism of muscle glycogen. CCL136 cells were cultured under standard conditions with the addition of NaF. The amount of ATP produced by the cells was determined using the HPLC method, the amount and expression of genes responsible for glycogen metabolism using WB and RT PCR methods and the amount of glycogen in cells using the fluorimetric and PAS methods. It has been shown that in CCL136 cells exposed to 1, 3 and 10 µM NaF there is a change in the energy state and expression pattern of enzymes involved in the synthesis and breakdown of glycogen. It was observed that NaF caused a decrease in ATP content in CCL136 cells. Fluoride exposure also increased glycogen deposition. These changes were accompanied by a decrease in gene expression and the level of enzymatic proteins related to glycogen metabolism: glycogen synthase, glycogen synthase kinase and glycogen phosphorylase. The results obtained shed new light on the molecular mechanisms by which fluoride acts as an environmental toxin.
Assuntos
Fluoretos , Flúor , Humanos , Fluoretos/farmacologia , Fibras Musculares Esqueléticas , Glicogênio , Linhagem Celular , Trifosfato de AdenosinaRESUMO
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1ß, IL-17, TGF-ß and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Assuntos
Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Transporte Proteico , Estabilidade de RNA , Animais , Biomarcadores , Proteínas de Transporte , Suscetibilidade a Doenças , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Espaço Intracelular , Especificidade de Órgãos , Ligação Proteica , Proteólise , Interferência de RNARESUMO
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Assuntos
Neoplasias , Receptores de Interleucina-8B , Transdução de Sinais , Quimiocina CXCL1/metabolismo , Quimiocinas/metabolismo , Humanos , Interleucina-8/metabolismo , Neoplasias/genética , Fosforilação , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismoRESUMO
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer's or Parkinson's disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Neoplasias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Cardiomegalia/tratamento farmacológico , Cardiomegalia/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Fármacos Cardiovasculares/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulação da Expressão Gênica , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologiaRESUMO
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Assuntos
Quinases Ciclina-Dependentes , Proteínas de Neoplasias , Neoplasias , Doenças Neurodegenerativas , Inibidores de Proteínas Quinases , Sítios de Ligação , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Hipóxia/genética , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/etiologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia , Óxido Nítrico/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Microambiente TumoralRESUMO
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors-CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Assuntos
Quimiocinas CXC/metabolismo , Regulação Neoplásica da Expressão Gênica , Hipóxia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores CXCR/metabolismo , Fatores Quimiotáticos/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação , Microcirculação , Subunidade p50 de NF-kappa B/metabolismoRESUMO
Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.
Assuntos
Cichorium intybus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antiparasitários/química , Antiparasitários/farmacologia , Antivirais/química , Antivirais/farmacologia , Cichorium intybus/fisiologia , Culinária , Hipersensibilidade Alimentar/etiologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Plantas Medicinais/química , Tratamento Farmacológico da COVID-19RESUMO
Breast milk has the most suitable composition for the proper development in the first year of a child's life. However, it is often replaced with artificial milk. The aim of the study was to analyze the composition of essential elements: Na, K, Ca, P, Mg, Fe, Zn, Cu, and Mn as well as toxic elements: Ni, Pb, Sr, Li, and In in 18 formulas available in Poland. The daily supply was also estimated. The study was performed by Inductively Coupled Plasma Optical Emission Spectrometry method. The results showed the presence of all essential elements tested, but the content of P and Mn significantly differed from the concentrations declared. Such discrepancies can have significant impact on the daily dose of the bioelements taken. However, the content of elements was within the reference standards established by the EU Directive with exception of P, the amount of which exceeded the norms 5.23-18.80-times. Daily supply of P in tested milk as well as Fe and Mn provided with first and hypoallergenic formula exceeded the adequate intake. Analysis revealed the contamination with harmful elements-Pb, Sr, Li, and In were detected in almost all products. The study confirms the data concerning some discrepancies in composition and the contamination of food and may provide information on the feeding quality of children and estimation of health risk associated with exposure to toxic elements.
Assuntos
Fórmulas Infantis/análise , Fórmulas Infantis/química , Leite Humano/química , Humanos , Lactente , Fórmulas Infantis/toxicidade , Recém-Nascido , Micronutrientes/análise , Micronutrientes/química , Polônia , Oligoelementos/análiseRESUMO
The possibility that oxidative stress promotes degradation of the extracellular matrix and a relationship between intraluminal thrombus (ILT) thickness and proteolytic activity within the abdominal aortic aneurysm (AAA) wall has been suggested. In the present study, the hypothesis that thin ILT is correlated with an increase in oxidative stress-related enzymes and matrix metalloproteinase-9 (MMP-9) expression within the human AAA wall was investigated. We also studied the antioxidant activity of superoxide dismutases, catalase, glutathione peroxidase, glutathione reductase, and thioredoxin within the full-thickness AAA wall and through fluoroimmunohistochemical staining of catalase and MMP-9 expression within the inner and outer media, in relation to ILT thickness. Reactive oxygen species control the degradation and remodeling of the extracellular matrix by up-regulating proteolytic enzymes, such as MMPs. Results showed that oxidative stress and proteolytic enzyme expression were simultaneously, significantly higher within thin thrombus (≤10 mm)-covered aneurysm wall when compared with the wall covered by thick thrombus (≥25 mm). These findings provide the first demonstration, to our knowledge, of a causative link between oxidative stress instigating proteolytic enzyme expression at the tissue level and human AAA development. Presence of a thin circumferential thrombus should always be considered as a risk factor for the greatest increase in aneurysm growth rate and rupture, giving an indication for surgery timing.-Wiernicki, I., Parafiniuk, M., Kolasa-Wolosiuk, A., Gutowska, I., Kazimierczak, A., Clark, J., Baranowska-Bosiacka, I., Szumilowicz, P., Gutowski, P. Relationship between aortic wall oxidative stress/proteolytic enzyme expression and intraluminal thrombus thickness indicates a novel pathomechanism in the progression of human abdominal aortic aneurysm.
Assuntos
Aorta/enzimologia , Aneurisma da Aorta Abdominal/patologia , Estresse Oxidativo , Peptídeo Hidrolases/metabolismo , Trombose/patologia , Idoso , Idoso de 80 Anos ou mais , Aneurisma da Aorta Abdominal/enzimologia , Catalase/metabolismo , Progressão da Doença , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo , Tiorredoxinas/metabolismoRESUMO
CC chemokines (or ß-chemokines) are 28 chemotactic cytokines with an N-terminal CC domain that play an important role in immune system cells, such as CD4+ and CD8+ lymphocytes, dendritic cells, eosinophils, macrophages, monocytes, and NK cells, as well in neoplasia. In this review, we discuss human CC motif chemokine ligands: CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 (CC motif chemokine receptor CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands). We present their functioning in human physiology and in neoplasia, including their role in the proliferation, apoptosis resistance, drug resistance, migration, and invasion of cancer cells. We discuss the significance of chemokine receptors in organ-specific metastasis, as well as the influence of each chemokine on the recruitment of various cells to the tumor niche, such as cancer-associated fibroblasts (CAF), Kupffer cells, myeloid-derived suppressor cells (MDSC), osteoclasts, tumor-associated macrophages (TAM), tumor-infiltrating lymphocytes (TIL), and regulatory T cells (Treg). Finally, we show how the effect of the chemokines on vascular endothelial cells and lymphatic endothelial cells leads to angiogenesis and lymphangiogenesis.
Assuntos
Quimiocinas CC/metabolismo , Neoplasias/metabolismo , Receptores CCR/metabolismo , Animais , Proliferação de Células , Humanos , Neoplasias/patologia , Transdução de Sinais , Microambiente TumoralRESUMO
Hypoxia, i.e., oxygen deficiency condition, is one of the most important factors promoting the growth of tumors. Since its effect on the chemokine system is crucial in understanding the changes in the recruitment of cells to a tumor niche, in this review we have gathered all the available data about the impact of hypoxia on ß chemokines. In the introduction, we present the chronic (continuous, non-interrupted) and cycling (intermittent, transient) hypoxia together with the mechanisms of activation of hypoxia inducible factors (HIF-1 and HIF-2) and NF-κB. Then we describe the effect of hypoxia on the expression of chemokines with the CC motif: CCL1, CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL24, CCL25, CCL26, CCL27, CCL28 together with CC chemokine receptors: CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10. To better understand the effect of hypoxia on neoplastic processes and changes in the expression of the described proteins, we summarize the available data in a table which shows the effect of individual chemokines on angiogenesis, lymphangiogenesis, and recruitment of eosinophils, myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) to a tumor niche.
Assuntos
Quimiocinas/metabolismo , Neoplasias/metabolismo , Receptores CCR/metabolismo , Hipóxia Tumoral , Humanos , Transdução de Sinais , Microambiente TumoralRESUMO
CC chemokines, a subfamily of 27 chemotactic cytokines, are a component of intercellular communication, which is crucial for the functioning of the tumor microenvironment. Although many individual chemokines have been well researched, there has been no comprehensive review presenting the role of all known human CC chemokines in the hallmarks of cancer, and this paper aims at filling this gap. The first part of this review discusses the importance of CCL1, CCL3, CCL4, CCL5, CCL18, CCL19, CCL20, CCL21, CCL25, CCL27, and CCL28 in cancer. Here, we discuss the significance of CCL2 (MCP-1), CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL16, CCL17, CCL22, CCL23, CCL24, and CCL26. The presentation of each chemokine includes its physiological function and then the role in tumor, including proliferation, drug resistance, migration, invasion, and organ-specific metastasis of tumor cells, as well as the effects on angiogenesis and lymphangiogenesis. We also discuss the effects of each CC chemokine on the recruitment of cancer-associated cells to the tumor niche (eosinophils, myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), regulatory T cells (Treg)). On the other hand, we also present the anti-cancer properties of CC chemokines, consisting in the recruitment of tumor-infiltrating lymphocytes (TIL).
Assuntos
Quimiocinas/metabolismo , Neoplasias/metabolismo , Receptores CCR/metabolismo , Animais , Humanos , LigantesRESUMO
Fractalkine/CX3C chemokine ligand 1 (CX3CL1) is a chemokine involved in the anticancer function of lymphocytes-mainly NK cells, T cells and dendritic cells. Its increased levels in tumors improve the prognosis for cancer patients, although it is also associated with a poorer prognosis in some types of cancers, such as pancreatic ductal adenocarcinoma. This work focuses on the 'hallmarks of cancer' involving CX3CL1 and its receptor CX3CR1. First, we describe signal transduction from CX3CR1 and the role of epidermal growth factor receptor (EGFR) in this process. Next, we present the role of CX3CL1 in the context of cancer, with the focus on angiogenesis, apoptosis resistance and migration and invasion of cancer cells. In particular, we discuss perineural invasion, spinal metastasis and bone metastasis of cancers such as breast cancer, pancreatic cancer and prostate cancer. We extensively discuss the importance of CX3CL1 in the interaction with different cells in the tumor niche: tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC) and microglia. We present the role of CX3CL1 in the development of active human cytomegalovirus (HCMV) infection in glioblastoma multiforme (GBM) brain tumors. Finally, we discuss the possible use of CX3CL1 in immunotherapy.
Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Células Supressoras Mieloides/metabolismo , Metástase Neoplásica , Neoplasias/patologia , Macrófagos Associados a Tumor/metabolismoRESUMO
Lead (Pb) is a heavy metal with a proven neurotoxic effect. Exposure is particularly dangerous to the developing brain in the pre- and neonatal periods. One postulated mechanism of its neurotoxicity is induction of inflammation. This study analyzed the effect of exposure of rat pups to Pb during periods of brain development on the concentrations of selected cytokines and prostanoids in the forebrain cortex, hippocampus and cerebellum. METHODS: Administration of 0.1% lead acetate (PbAc) in drinking water ad libitum, from the first day of gestation to postnatal day 21, resulted in blood Pb in rat pups reaching levels below the threshold considered safe for humans by the Centers for Disease Control and Prevention (10 µg/dL). Enzyme-linked immunosorbent assay (ELISA) method was used to determine the levels of interleukins IL-1ß, IL-6, transforming growth factor-ß (TGF-ß), prostaglandin E2 (PGE2) and thromboxane B2 (TXB2). Western blot and quantitative real-time PCR were used to determine the expression levels of cyclooxygenases COX-1 and COX-2. Finally, Western blot was used to determine the level of nuclear factor kappa B (NF-κB). RESULTS: In all studied brain structures (forebrain cortex, hippocampus and cerebellum), the administration of Pb caused a significant increase in all studied cytokines and prostanoids (IL-1ß, IL-6, TGF-ß, PGE2 and TXB2). The protein and mRNA expression of COX-1 and COX-2 increased in all studied brain structures, as did NF-κB expression. CONCLUSIONS: Chronic pre- and neonatal exposure to Pb induces neuroinflammation in the forebrain cortex, hippocampus and cerebellum of rat pups.
Assuntos
Cerebelo/imunologia , Encefalite/induzido quimicamente , Hipocampo/imunologia , Chumbo/toxicidade , Efeitos Tardios da Exposição Pré-Natal/imunologia , Prosencéfalo/imunologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Cerebelo/efeitos dos fármacos , Dinoprostona/metabolismo , Modelos Animais de Doenças , Encefalite/imunologia , Feminino , Hipocampo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Gravidez , Prosencéfalo/efeitos dos fármacos , Ratos , Tromboxano B2/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
The ideal immunosuppressive regimen should provide for excellent immunosuppression with no side effects. Yet, current immunosuppressive therapy regimens commonly used in clinical applications fail to meet this criterion. One of the complications caused by immunosuppressive drugs is mineralization disorders in hard tissues. In this study, we evaluated the effects of three immunosuppressive therapies used after transplantation on the levels of potassium, iron, chromium, zinc, aluminum, sodium and molybdenum in the bones and teeth of female rats and their offspring. The study was conducted on 32 female Wistar rats, subjected to immunosuppressive regimens (cyclosporine A, mycophenolate mofetil and prednisone; tacrolimus, mycophenolate mofetil and prednisone; and cyclosporine A, everolimus and prednisone). The hard tissues of rats were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES, ICAP 7400 Duo, Thermo Scientific) equipped with a concentric nebulizer and a cyclonic spray chamber. All the immunosuppressive regimens included in the study affected the concentrations of the studied minerals in hard tissues of female rats and their offspring. The therapy based on cyclosporine A, everolimus and prednisone led to a decline in the levels of iron in bone, zinc in teeth, and molybdenum in the bone and teeth of mothers, while in the offspring, it caused a decline of bone potassium, with a decrease in iron and increase of molybdenum in teeth. Moreover, the regimen caused an increase in aluminum and chromium in the teeth and aluminum in the bones of the offspring, and consequently, it seems to be the therapy with the most negative impact on the mineral metabolism in hard tissues.
Assuntos
Imunossupressores/farmacologia , Minerais/metabolismo , Especificidade de Órgãos , Alumínio/metabolismo , Animais , Osso e Ossos/metabolismo , Cromo/metabolismo , Feminino , Ferro/metabolismo , Molibdênio/metabolismo , Potássio/metabolismo , Gravidez , Ratos Wistar , Sódio/metabolismo , Zinco/metabolismoRESUMO
The aim of this study was to assess the influence of lead (Pb) at low concentrations (imitating Pb levels in human blood in chronic environmental exposure to this metal) on interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) concentrations and the activity and expression of COX-1 and COX-2 in THP-1 macrophages. Macrophages were cultured in vitro in the presence of Pb at concentrations of: 1.25 µg/dL; 2.5 µg/dL; 5 µg/dL; 10 µg/dL. The first two concentrations of Pb were selected on the basis of our earlier study, which showed that Pb concentration in whole blood (PbB) of young women living in the northern regions of Poland and in the cord blood of their newborn children was within this range (a dose imitating environmental exposure). Concentrations of 5 µg/dL and 10 µg/dL correspond to the previously permissible PbB concentrations in children or pregnant women, and adults. Our results indicate that even low concentrations of Pb cause an increase in production of inflammatory interleukins (IL-1ß and IL-6), increases expression of COX-1 and COX-2, and increases thromboxane B2 and prostaglandin E2 concentration in macrophages. This clearly suggests that the development of inflammation is associated not only with COX-2 but also with COX-1, which, until recently, had only been attributed constitutive expression. It can be concluded that environmental Pb concentrations are able to activate the monocytes/macrophages similarly to the manner observed during inflammation.