Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Epidemiology ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935439

RESUMO

BACKGROUND: Prenatal ethylene oxide exposure may have adverse effects on fetal development. We examined the relationships between ethylene oxide hemoglobin (Hb) adduct levels and offspring's size at birth in a prospective European mother-child study. METHODS: This study included 1,106 singletons from the NewGeneris project (2006-2010) with ethylene oxide Hb adducts measured in cord blood. We examined the relationships between adduct levels and offspring's size at birth among all infants and separately among infants of non-smokers, using linear regression models for birth weight and birth head circumference and logarithmic binomial regression models for small-for-gestational age (SGA). We examined potential interactions between CYP2E1 single nucleotide polymorphisms (SNPs) in cord blood and the effects of ethylene oxide Hb adduct levels on offspring birth size. RESULTS: Higher quartiles of adduct levels as a measure of exposure were associated with decreasing birth weight and head circumference in the overall population. Compared to infants in the lowest quartile, those in the highest quartile exhibited lower birth weight (-70.73 g, 95% CI: -141.16, -0.30) and reduced head circumference (-0.30 cm, 95% CI: -0.58, -0.02). We observed similar, albeit less pronounced, patterns among infants of non-smokers. There was no evidence of an association between ethylene oxide Hb adducts and risk of SGA, nor consistent evidence of an interaction with CYP2E1 polymorphisms on the association between EO Hb adduct levels and offspring's size at birth. CONCLUSIONS: Results suggest that higher ethylene oxide Hb adduct levels in cord blood are associated with a reduction in offspring birth size.

2.
Mol Psychiatry ; 28(3): 1128-1136, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385171

RESUMO

The general psychopathology factor (GPF) has been proposed as a way to capture variance shared between psychiatric symptoms. Despite a growing body of evidence showing both genetic and environmental influences on GPF, the biological mechanisms underlying these influences remain unclear. In the current study, we conducted epigenome-wide meta-analyses to identify both probe- and region-level associations of DNA methylation (DNAm) with school-age general psychopathology in six cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. DNAm was examined both at birth (cord blood; prospective analysis) and during school-age (peripheral whole blood; cross-sectional analysis) in total samples of N = 2178 and N = 2190, respectively. At school-age, we identified one probe (cg11945228) located in the Bromodomain-containing protein 2 gene (BRD2) that negatively associated with GPF (p = 8.58 × 10-8). We also identified a significant differentially methylated region (DMR) at school-age (p = 1.63 × 10-8), implicating the SHC Adaptor Protein 4 (SHC4) gene and the EP300-interacting inhibitor of differentiation 1 (EID1) gene that have been previously implicated in multiple types of psychiatric disorders in adulthood, including obsessive compulsive disorder, schizophrenia, and major depressive disorder. In contrast, no prospective associations were identified with DNAm at birth. Taken together, results of this study revealed some evidence of an association between DNAm at school-age and GPF. Future research with larger samples is needed to further assess DNAm variation associated with GPF.


Assuntos
Metilação de DNA , Transtorno Depressivo Maior , Gravidez , Recém-Nascido , Feminino , Humanos , Epigenoma , Epigênese Genética , Estudos Transversais , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla
3.
Hum Mol Genet ; 29(23): 3830-3844, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33283231

RESUMO

Human metabolism is influenced by genetic and environmental factors. Previous studies have identified over 23 loci associated with more than 26 urine metabolites levels in adults, which are known as urinary metabolite quantitative trait loci (metabQTLs). The aim of the present study is the identification for the first time of urinary metabQTLs in children and their interaction with dietary patterns. Association between genome-wide genotyping data and 44 urine metabolite levels measured by proton nuclear magnetic resonance spectroscopy was tested in 996 children from the Human Early Life Exposome project. Twelve statistically significant urine metabQTLs were identified, involving 11 unique loci and 10 different metabolites. Comparison with previous findings in adults revealed that six metabQTLs were already known, and one had been described in serum and three were involved the same locus as other reported metabQTLs but had different urinary metabolites. The remaining two metabQTLs represent novel urine metabolite-locus associations, which are reported for the first time in this study [single nucleotide polymorphism (SNP) rs12575496 for taurine, and the missense SNP rs2274870 for 3-hydroxyisobutyrate]. Moreover, it was found that urinary taurine levels were affected by the combined action of genetic variation and dietary patterns of meat intake as well as by the interaction of this SNP with beverage intake dietary patterns. Overall, we identified 12 urinary metabQTLs in children, including two novel associations. While a substantial part of the identified loci affected urinary metabolite levels both in children and in adults, the metabQTL for taurine seemed to be specific to children and interacted with dietary patterns.


Assuntos
Dieta , Metaboloma , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Urinálise/métodos , Criança , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
4.
BMC Med ; 21(1): 142, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046291

RESUMO

BACKGROUND: Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children's obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment. METHODS: We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5-11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level. RESULTS: We observed that E1 was defined by the combination of low dairy consumption, non-smokers' cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction = 0.070, P = 2.59 × 10-5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction = 0.42, P = 0.047) and working memory (ORinteraction = 0.31, P = 0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0. CONCLUSIONS: The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.


Assuntos
Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Humanos , Masculino , Feminino , Caracteres Sexuais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Desenvolvimento Infantil
5.
BMC Psychiatry ; 23(1): 696, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749515

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS: Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS: We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS: The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , MicroRNAs , Humanos , Criança , Feminino , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , MicroRNAs/genética , Transtorno do Espectro Autista/psicologia , Coorte de Nascimento , Biomarcadores , Agitação Psicomotora/complicações
6.
Mol Psychiatry ; 26(6): 2148-2162, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33420481

RESUMO

DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N = 15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha = 1.2 × 10-7; Bonferroni correction). In cord blood samples of 2425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression (r = 0.74, p = 0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripheral blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range = 3-82%) of the aggression-methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.


Assuntos
Metilação de DNA , Epigenoma , Adolescente , Adulto , Idoso , Agressão , Criança , Pré-Escolar , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Longevidade , Pessoa de Meia-Idade , Adulto Jovem
7.
Environ Res ; 211: 113109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292243

RESUMO

Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pressão Sanguínea , Criança , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Material Particulado/toxicidade
8.
Environ Res ; 204(Pt B): 112093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562483

RESUMO

Mercury (Hg) is a ubiquitous heavy metal that originates from both natural and anthropogenic sources and is transformed in the environment to its most toxicant form, methylmercury (MeHg). Recent studies suggest that MeHg exposure can alter epigenetic modifications during embryogenesis. In this study, we examined associations between prenatal MeHg exposure and levels of cord blood DNA methylation (DNAm) by meta-analysis in up to seven independent studies (n = 1462) as well as persistence of those relationships in blood from 7 to 8 year-old children (n = 794). In cord blood, we found limited evidence of differential DNAm at cg24184221 in MED31 (ß = 2.28 × 10-4, p-value = 5.87 × 10-5) in relation to prenatal MeHg exposure. In child blood, we identified differential DNAm at cg15288800 (ß = 0.004, p-value = 4.97 × 10-5), also located in MED31. This repeated link to MED31, a gene involved in lipid metabolism and RNA Polymerase II transcription function, may suggest a DNAm perturbation related to MeHg exposure that persists into early childhood. Further, we found evidence for association between prenatal MeHg exposure and child blood DNAm levels at two additional CpGs: cg12204245 (ß = 0.002, p-value = 4.81 × 10-7) in GRK1 and cg02212000 (ß = -0.001, p-value = 8.13 × 10-7) in GGH. Prenatal MeHg exposure was associated with DNAm modifications that may influence health outcomes, such as cognitive or anthropometric development, in different populations.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Criança , Pré-Escolar , Metilação de DNA , Feminino , Sangue Fetal , Humanos , Complexo Mediador , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Estudos Prospectivos
9.
Crit Rev Toxicol ; 51(2): 141-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33853480

RESUMO

Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Fluorocarbonos , Ácidos Alcanossulfônicos , Caprilatos , Humanos
10.
BMC Med ; 18(1): 243, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32811491

RESUMO

BACKGROUND: The adverse health effects of early life exposure to tobacco smoking have been widely reported. In spite of this, the underlying molecular mechanisms of in utero and postnatal exposure to tobacco smoke are only partially understood. Here, we aimed to identify multi-layer molecular signatures associated with exposure to tobacco smoke in these two exposure windows. METHODS: We investigated the associations of maternal smoking during pregnancy and childhood secondhand smoke (SHS) exposure with molecular features measured in 1203 European children (mean age 8.1 years) from the Human Early Life Exposome (HELIX) project. Molecular features, covering 4 layers, included blood DNA methylation and gene and miRNA transcription, plasma proteins, and sera and urinary metabolites. RESULTS: Maternal smoking during pregnancy was associated with DNA methylation changes at 18 loci in child blood. DNA methylation at 5 of these loci was related to expression of the nearby genes. However, the expression of these genes themselves was only weakly associated with maternal smoking. Conversely, childhood SHS was not associated with blood DNA methylation or transcription patterns, but with reduced levels of several serum metabolites and with increased plasma PAI1 (plasminogen activator inhibitor-1), a protein that inhibits fibrinolysis. Some of the in utero and childhood smoking-related molecular marks showed dose-response trends, with stronger effects with higher dose or longer duration of the exposure. CONCLUSION: In this first study covering multi-layer molecular features, pregnancy and childhood exposure to tobacco smoke were associated with distinct molecular phenotypes in children. The persistent and dose-dependent changes in the methylome make CpGs good candidates to develop biomarkers of past exposure. Moreover, compared to methylation, the weak association of maternal smoking in pregnancy with gene expression suggests different reversal rates and a methylation-based memory to past exposures. Finally, certain metabolites and protein markers evidenced potential early biological effects of postnatal SHS, such as fibrinolysis.


Assuntos
Biomarcadores/sangue , Metilação de DNA/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
11.
Mutagenesis ; 33(1): 31-39, 2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29240951

RESUMO

The alkaline comet assay and a cell-free system were used to characterise DNA lesions induced by treatment with glycidamide (GA), a metabolite of the food contaminant acrylamide. DNA lesions induced by GA were sensitively detected when the formamidopyrimidine-DNA-glycosylase (Fpg) enzyme was included in the comet assay. We used LC-MS to characterise modified bases from GA-treated naked DNA with and without subsequent Fpg treatment. N7-GA-Guanine and N3-GA-Adenine aglycons were detected in the supernatant showing some depurination of adducted bases; treatment of naked DNA with Fpg revealed no further increase in the adduct yield nor occurrence of other adducted nucleobases. We treated human lymphocytes with GA and found large differences in DNA lesion levels detected with Fpg, depending on the duration and the pH of the lysis step. These lysis-dependent variations in GA-induced Fpg sensitive sites paralleled those observed after treatment of cells with methyl methane sulfonate (MMS). On the other hand, oxidative lesions (8-oxoGuanine) induced by a photoactive compound (Ro 12-9786) plus light, and also DNA strand breaks induced by X-rays, were detected largely independently of the lysis conditions. The results suggest that the GA-induced lesions are predominantly N7-GA-dG adducts slowly undergoing imidazole ring opening at pH 10 as in the standard lysis procedure; such structures are substrate for Fpg leading to strand breaks. The data suggest that the characteristic alkaline lysis dependence of some DNA lesions may be used to study specific types of DNA modifications. The comet assay is increasingly used in regulatory testing of chemicals; in this context, lysis-dependent variations represent a novel approach to obtain insight in the molecular nature of a genotoxic insult.


Assuntos
Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Compostos de Epóxi/toxicidade , Acrilamida/toxicidade , Animais , Bovinos , Cromatografia Líquida , Ensaio Cometa/métodos , DNA , Adutos de DNA , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Espectrometria de Massas , Mutagênicos/toxicidade
12.
Mutagenesis ; 33(1): 25-30, 2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29329446

RESUMO

The alkaline comet assay, in vivo and in vitro, is currently used in several areas of research and in regulatory genotoxicity testing. Several efforts have been made in order to decrease the inter-experimental and inter-laboratory variability and increase the reliability of the assay. In this regard, lysis conditions are considered as one of the critical variables and need to be further studied. Here, we tested different times of lysis (from no lysis to 1 week) and two different lysis solutions in human lymphoblast (TK6) cells unexposed or exposed to X-rays. Similar % tail DNA values were obtained independently of the time of lysis employed for every X-ray dose tested and both lysis solutions. These results, taken together with our previous ones with methyl methanesulfonate and H2O2, which showed clear lysis-time dependence, support that the influence of the lysis time in the comet assay results depends on the type of lesion being detected; some DNA lesions may spontaneously give rise to apurinic or apyrimidinic (AP) sites during the lysis period, which can be converted into strand breaks detectable with the comet assay. Testing different times of lysis would be useful to increase the sensitivity of the comet assay and to ensure the detection of DNA lesions of an unknown compound, thereby providing some insight into the chemical nature of the lesions induced. However, the same lysis conditions (i.e. lysis time and lysis solution) should be used when comparing results between different experiments or laboratories.


Assuntos
Ensaio Cometa/métodos , Ensaio Cometa/normas , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Padrões de Referência , Reprodutibilidade dos Testes , Soluções , Fatores de Tempo , Raios X/efeitos adversos
13.
Ecotoxicol Environ Saf ; 154: 19-26, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29453161

RESUMO

The biological effects of gamma radiation may exert damage beyond that of the individual through its deleterious effects on reproductive function. Impaired reproductive performance can result in reduced population size over consecutive generations. In a continued effort to investigate reproductive and heritable effects of ionizing radiation, we recently demonstrated adverse effects and genomic instability in progeny of parents exposed to gamma radiation. In the present study, genotoxicity and effects on the reproduction following subchronic exposure during a gametogenesis cycle to 60Co gamma radiation (27 days, 8.7 and 53 mGy/h, total doses 5.2 and 31 Gy) were investigated in the adult wild-type zebrafish (Danio rerio). A significant reduction in embryo production was observed one month after exposure in the 53 mGy/h exposure group compared to control and 8.7 mGy/h. One year later, embryo production was significantly lower in the 53 mGy/h group compared only to control, with observed sterility, accompanied by a regression of reproductive organs in 100% of the fish 1.5 years after exposure. Histopathological examinations revealed no significant changes in the testis in the 8.7 mGy/h group, while in 62.5% of females exposed to this dose rate the oogenesis was found to be only at the early previtellogenic stage. The DNA damage determined in whole blood, 1.5 years after irradiation, using a high throughput Comet assay, was significantly higher in the exposed groups (1.2 and 3-fold increase in 8.7 and 53 mGy/h females respectively; 3-fold and 2-fold increase in 8.7 and 53 mGy/h males respectively) compared to controls. A significantly higher number of micronuclei (4-5%) was found in erythrocytes of both the 8.7 and 53 mGy/h fish compared to controls. This study shows that gamma radiation at a dose rate of ≥ 8.7 mGy/h during gametogenesis causes adverse reproductive effects and persistent genotoxicity (DNA damage and increased micronuclei) in adult zebrafish.


Assuntos
Dano ao DNA , Gametogênese/efeitos da radiação , Raios gama/efeitos adversos , Reprodução/efeitos dos fármacos , Peixe-Zebra/genética , Animais , Ensaio Cometa , Relação Dose-Resposta à Radiação , Feminino , Gametogênese/genética , Instabilidade Genômica/efeitos da radiação , Masculino , Óvulo/efeitos da radiação , Reprodução/genética , Testículo/efeitos da radiação , Peixe-Zebra/crescimento & desenvolvimento
14.
Epidemiology ; 25(2): 215-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487205

RESUMO

BACKGROUND: Maternal exposure to dioxins and dioxin-like compounds may affect fetal growth and development. We evaluated the association between in utero dioxin-like activity and birth outcomes in a prospective European mother-child study. METHODS: We measured dioxin-like activity in maternal and cord blood plasma samples collected at delivery using the Dioxin-Responsive Chemically Activated LUciferase eXpression (DR CALUX) bioassay in 967 mother-child pairs, in Denmark, Greece, Norway, Spain, and England. Multiple linear regression models were used to investigate the associations with birth weight, gestational age, and head circumference. RESULTS: Plasma dioxin-like activity was higher in maternal sample than in cord samples. Birth weight was lower with medium (-58 g [95% confidence interval (CI) = -176 to 62]) and high (-82 g [-216 to 53]) tertiles of exposure (cord blood) compared with the lowest tertile. Gestational age was shorter by approximately half a week in the highest compared with the lowest (-0.4 weeks [95% CI = -0.8 to -0.1]). This association was stronger in boys than in girls, although the statistical evidence for interaction was weak (P = 0.22). Analysis based on CALUX-toxic equivalents expressed per milliliter of plasma showed similar trends. We found no association between dioxin-like activity in maternal plasma and birth outcomes. CONCLUSIONS: Results from this international general population study suggest an association between low-level prenatal dioxin-like activity and shorter gestational age, particularly in boys, with weaker associations for birth weight.


Assuntos
Peso ao Nascer/efeitos dos fármacos , Dioxinas/toxicidade , Poluentes Ambientais/toxicidade , Exposição Materna/efeitos adversos , Nascimento Prematuro/induzido quimicamente , Adulto , Bioensaio , Dioxinas/sangue , Poluentes Ambientais/sangue , Europa (Continente) , Feminino , Sangue Fetal/química , Idade Gestacional , Humanos , Recém-Nascido , Modelos Lineares , Masculino , Gravidez , Estudos Prospectivos , Fatores Sexuais
15.
FASEB J ; 27(7): 2873-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23538710

RESUMO

Paternal exposure to high levels of radioactivity causes heritable germline minisatellite mutations. However, the effect of more general paternal exposures, such as cigarette smoking, on germline mutations remains unexplored. We analyzed two of the most commonly used minisatellite loci (CEB1 and B6.7) to identify germline mutations in blood samples of complete mother-father-child triads from the Norwegian Mother and Child Cohort Study (MoBa). The presence of mutations was subsequently related to general lifestyle factors, including paternal smoking before the partner became pregnant. Paternally derived mutations at the B6.7 locus (mutation frequency 0.07) were not affected by lifestyle. In contrast, high gross yearly income as a general measure of a healthy lifestyle coincided with low-mutation frequencies at the CEB1 locus (P=0.047). Income was inversely related to smoking behavior, and paternally derived CEB1 mutations were dose dependently increased when the father smoked in the 6 mo before pregnancy, 0.21 vs. 0.05 in smoking and nonsmoking fathers, respectively (P=0.061). These results suggest that paternal lifestyle can affect the chance of heritable mutations in unstable repetitive DNA sequences. To our knowledge, this is the first study reporting an effect of lifestyle on germline minisatellite mutation frequencies in a human population with moderate paternal exposures.


Assuntos
Mutação em Linhagem Germinativa , Peptídeos e Proteínas de Sinalização Intracelular/genética , Repetições Minissatélites/genética , Fumar , Adulto , Alelos , Criança , Análise Mutacional de DNA , Feminino , Frequência do Gene , Humanos , Renda , Estilo de Vida , Masculino , Taxa de Mutação , Núcleo Familiar , Comportamento Paterno , Gravidez , Estudos Prospectivos , Inquéritos e Questionários
17.
Commun Med (Lond) ; 4(1): 98, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783062

RESUMO

BACKGROUND: Early life environmental stressors play an important role in the development of multiple chronic disorders. Previous studies that used environmental risk scores (ERS) to assess the cumulative impact of environmental exposures on health are limited by the diversity of exposures included, especially for early life determinants. We used machine learning methods to build early life exposome risk scores for three health outcomes using environmental, molecular, and clinical data. METHODS: In this study, we analyzed data from 1622 mother-child pairs from the HELIX European birth cohorts, using over 300 environmental, 100 child peripheral, and 18 mother-child clinical markers to compute environmental-clinical risk scores (ECRS) for child behavioral difficulties, metabolic syndrome, and lung function. ECRS were computed using LASSO, Random Forest and XGBoost. XGBoost ECRS were selected to extract local feature contributions using Shapley values and derive feature importance and interactions. RESULTS: ECRS captured 13%, 50% and 4% of the variance in mental, cardiometabolic, and respiratory health, respectively. We observed no significant differences in predictive performances between the above-mentioned methods.The most important predictive features were maternal stress, noise, and lifestyle exposures for mental health; proteome (mainly IL1B) and metabolome features for cardiometabolic health; child BMI and urine metabolites for respiratory health. CONCLUSIONS: Besides their usefulness for epidemiological research, our risk scores show great potential to capture holistic individual level non-hereditary risk associations that can inform practitioners about actionable factors of high-risk children. As in the post-genetic era personalized prevention medicine will focus more and more on modifiable factors, we believe that such integrative approaches will be instrumental in shaping future healthcare paradigms.


Growing up in different environments can greatly affect children's health later in life. This research looked at how living in cities, being exposed to chemicals, and other experiences before birth and during childhood, work together to influence children's mental, cardiovascular and respiratory health. We used advanced computer programs to help us understand these effects and estimate health risk scores. These scores are simple numerical measures that help us quantify the likelihood of children developing health issues based on their environmental exposures. Using those scores, the study identified key factors impacting children's health, in particular psycho-social, perceived environmental and prenatal pollutant exposures for mental health. It also revealed complex patterns and interactions between environmental factors. The results highlighted the potential of such risk scores to support the identification of actionable factors in high-risk children, informing tailored prevention measures in healthcare.

18.
Environ Int ; 190: 108845, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38945087

RESUMO

INTRODUCTION: Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE: In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS: The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS: We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION: Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.

19.
Aging Cell ; : e14194, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808605

RESUMO

Worldwide trends to delay childbearing have increased parental ages at birth. Older parental age may harm offspring health, but mechanisms remain unclear. Alterations in offspring DNA methylation (DNAm) patterns could play a role as aging has been associated with methylation changes in gametes of older individuals. We meta-analyzed epigenome-wide associations of parental age with offspring blood DNAm of over 9500 newborns and 2000 children (5-10 years old) from the Pregnancy and Childhood Epigenetics consortium. In newborns, we identified 33 CpG sites in 13 loci with DNAm associated with maternal age (PFDR < 0.05). Eight of these CpGs were located near/in the MTNR1B gene, coding for a melatonin receptor. Regional analysis identified them together as a differentially methylated region consisting of 9 CpGs in/near MTNR1B, at which higher DNAm was associated with greater maternal age (PFDR = 6.92 × 10-8) in newborns. In childhood blood samples, these differences in blood DNAm of MTNR1B CpGs were nominally significant (p < 0.05) and retained the same positive direction, suggesting persistence of associations. Maternal age was also positively associated with higher DNA methylation at three CpGs in RTEL1-TNFRSF6B at birth (PFDR < 0.05) and nominally in childhood (p < 0.0001). Of the remaining 10 CpGs also persistent in childhood, methylation at cg26709300 in YPEL3/BOLA2B in external data was associated with expression of ITGAL, an immune regulator. While further study is needed to establish causality, particularly due to the small effect sizes observed, our results potentially support offspring DNAm as a mechanism underlying associations of maternal age with child health.

20.
Mutagenesis ; 28(3): 333-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23462850

RESUMO

The single-cell gel electrophoresis--the comet assay--has proved to be a sensitive and relatively simple method that is much used in research for the analysis of specific types of DNA damage, and its use in genotoxicity testing is increasing. The efficiency of the comet assay, in terms of number of samples processed per experiment, has been rather poor, and both research and toxicological testing should profit from an increased throughput. We have designed and validated a format involving 96 agarose minigels supported by a hydrophilic polyester film. Using simple technology, hundreds of samples may be processed in one experiment by one person, with less time needed for processing, less use of chemicals and requiring fewer cells per sample. Controlled electrophoresis, including circulation of the electrophoresis solution, improves the homogeneity between replicate samples in the 96-minigel format. The high-throughput method described in this paper should greatly increase the overall capacity, versatility and robustness of the comet assay.


Assuntos
Ensaio Cometa/métodos , Ensaios de Triagem em Larga Escala , Ensaio Cometa/instrumentação , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Ágar/métodos , Humanos , Reprodutibilidade dos Testes , Raios X/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA