Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-24827337

RESUMO

We present a numerical study of Rayleigh-Bénard convection disturbed by a longitudinal wind. Our results show that under the action of the wind, the vertical heat flux through the cell initially decreases, due to the mechanism of plume sweeping, and then increases again when turbulent forced convection dominates over the buoyancy. As a result, the Nusselt number is a nonmonotonic function of the shear Reynolds number. We provide simple models that capture with good accuracy all the dynamical regimes observed. We expect that our findings can lead the way to a more fundamental understanding of the complex interplay between mean wind and plume ejection in the Rayleigh-Bénard phenomenology.

2.
Phys Rev Lett ; 100(21): 214501, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18518606

RESUMO

We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These findings are in qualitative agreement with recent theoretical and computational studies of inertial particle clustering in turbulence. Because of the large Reynolds numbers a broad scaling range of particle clustering due to turbulent mixing is present, and the inertial clustering can clearly be distinguished from that due to mixing of fluid particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA