Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 96(2): 365-377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38845484

RESUMO

OBJECTIVE: The long-term consequences of traumatic brain injury (TBI) on brain structure remain uncertain. Given evidence that a single significant brain injury event increases the risk of dementia, brain-age estimation could provide a novel and efficient indexing of the long-term consequences of TBI. Brain-age procedures use predictive modeling to calculate brain-age scores for an individual using structural magnetic resonance imaging (MRI) data. Complicated mild, moderate, and severe TBI (cmsTBI) is associated with a higher predicted age difference (PAD), but the progression of PAD over time remains unclear. We sought to examine whether PAD increases as a function of time since injury (TSI) and if injury severity and sex interacted to influence this progression. METHODS: Through the ENIGMA Adult Moderate and Severe (AMS)-TBI working group, we examine the largest TBI sample to date (n = 343), along with controls, for a total sample size of n = 540, to replicate and extend prior findings in the study of TBI brain age. Cross-sectional T1w-MRI data were aggregated across 7 cohorts, and brain age was established using a similar brain age algorithm to prior work in TBI. RESULTS: Findings show that PAD widens with longer TSI, and there was evidence for differences between sexes in PAD, with men showing more advanced brain age. We did not find strong evidence supporting a link between PAD and cognitive performance. INTERPRETATION: This work provides evidence that changes in brain structure after cmsTBI are dynamic, with an initial period of change, followed by relative stability in brain morphometry, eventually leading to further changes in the decades after a single cmsTBI. ANN NEUROL 2024;96:365-377.


Assuntos
Lesões Encefálicas Traumáticas , Imageamento por Ressonância Magnética , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/complicações , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso , Envelhecimento/patologia , Senilidade Prematura/diagnóstico por imagem , Senilidade Prematura/patologia
2.
J Neurosci ; 43(39): 6609-6618, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37562962

RESUMO

Decades of research have greatly improved our understanding of intrinsic human brain organization in terms of functional networks and the transmodal hubs within the cortex at which they converge. However, substrates of multinetwork integration in the human subcortex are relatively uncharted. Here, we leveraged recent advances in subcortical atlasing and ultra-high field (7 T) imaging optimized for the subcortex to investigate the functional architecture of 14 individual structures in healthy adult males and females with a fully data-driven approach. We revealed that spontaneous neural activity in subcortical regions can be decomposed into multiple independent subsignals that correlate with, or "echo," the activity in functional networks across the cortex. Distinct subregions of the thalamus, striatum, claustrum, and hippocampus showed a varied pattern of echoes from attention, control, visual, somatomotor, and default mode networks, demonstrating evidence for a heterogeneous organization supportive of functional integration. Multiple network activity furthermore converged within the globus pallidus externa, substantia nigra, and ventral tegmental area but was specific to one subregion, while the amygdala and pedunculopontine nucleus preferentially affiliated with a single network, showing a more homogeneous topography. Subregional connectivity of the globus pallidus interna, subthalamic nucleus, red nucleus, periaqueductal gray, and locus coeruleus did not resemble patterns of cortical network activity. Together, these finding describe potential mechanisms through which the subcortex participates in integrated and segregated information processing and shapes the spontaneous cognitive dynamics during rest.SIGNIFICANCE STATEMENT Despite the impact of subcortical dysfunction on brain health and cognition, large-scale functional mapping of subcortical structures severely lags behind that of the cortex. Recent developments in subcortical atlasing and imaging at ultra-high field provide new avenues for studying the intricate functional architecture of the human subcortex. With a fully data-driven analysis, we reveal subregional connectivity profiles of a large set of noncortical structures, including those rarely studied in fMRI research. The results have implications for understanding how the functional organization of the subcortex facilitates integrative processing through cross-network information convergence, paving the way for future work aimed at improving our knowledge of subcortical contributions to intrinsic brain dynamics and spontaneous cognition.


Assuntos
Mapeamento Encefálico , Encéfalo , Adulto , Masculino , Feminino , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Substância Negra , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem
3.
J Neuroinflammation ; 21(1): 109, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678300

RESUMO

BACKGROUND: Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS: Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS: The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1ß and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS: The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.


Assuntos
Biomarcadores , Concussão Encefálica , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Masculino , Biomarcadores/sangue , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Pessoa de Meia-Idade , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/sangue , Concussão Encefálica/complicações , Adulto Jovem , Proteínas de Neurofilamentos/sangue , Proteína Glial Fibrilar Ácida/sangue , Idoso , Fatores de Tempo
4.
Eur Radiol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896232

RESUMO

OBJECTIVES: We analysed magnetic resonance imaging (MRI) findings after traumatic brain injury (TBI) aiming to improve the grading of traumatic axonal injury (TAI) to better reflect the outcome. METHODS: Four-hundred sixty-three patients (8-70 years) with mild (n = 158), moderate (n = 129), or severe (n = 176) TBI and early MRI were prospectively included. TAI presence, numbers, and volumes at predefined locations were registered on fluid-attenuated inversion recovery (FLAIR) and diffusion-weighted imaging, and presence and numbers on T2*GRE/SWI. Presence and volumes of contusions were registered on FLAIR. We assessed the outcome with the Glasgow Outcome Scale Extended. Multivariable logistic and elastic-net regression analyses were performed. RESULTS: The presence of TAI differed between mild (6%), moderate (70%), and severe TBI (95%). In severe TBI, bilateral TAI in mesencephalon or thalami and bilateral TAI in pons predicted worse outcomes and were defined as the worst grades (4 and 5, respectively) in the Trondheim TAI-MRI grading. The Trondheim TAI-MRI grading performed better than the standard TAI grading in severe TBI (pseudo-R2 0.19 vs. 0.16). In moderate-severe TBI, quantitative models including both FLAIR volume of TAI and contusions performed best (pseudo-R2 0.19-0.21). In patients with mild TBI or Glasgow Coma Scale (GCS) score 13, models with the volume of contusions performed best (pseudo-R2 0.25-0.26). CONCLUSIONS: We propose the Trondheim TAI-MRI grading (grades 1-5) with bilateral TAI in mesencephalon or thalami, and bilateral TAI in pons as the worst grades. The predictive value was highest for the quantitative models including FLAIR volume of TAI and contusions (GCS score <13) or FLAIR volume of contusions (GCS score ≥ 13), which emphasise artificial intelligence as a potentially important future tool. CLINICAL RELEVANCE STATEMENT: The Trondheim TAI-MRI grading reflects patient outcomes better in severe TBI than today's standard TAI grading and can be implemented after external validation. The prognostic importance of volumetric models is promising for future use of artificial intelligence technologies. KEY POINTS: Traumatic axonal injury (TAI) is an important injury type in all TBI severities. Studies demonstrating which MRI findings that can serve as future biomarkers are highly warranted. This study proposes the most optimal MRI models for predicting patient outcome at 6 months after TBI; one updated pragmatic model and a volumetric model. The Trondheim TAI-MRI grading, in severe TBI, reflects patient outcome better than today's standard grading of TAI and the prognostic importance of volumetric models in all severities of TBI is promising for future use of AI.

5.
Cereb Cortex ; 33(11): 7100-7119, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36790738

RESUMO

This study investigated how proactive and reactive cognitive control processing in the brain was associated with habitual sleep health. BOLD fMRI data were acquired from 81 healthy adults with normal sleep (41 females, age 20.96-39.58 years) during a test of cognitive control (Not-X-CPT). Sleep health was assessed in the week before MRI scanning, using both objective (actigraphy) and self-report measures. Multiple measures indicating poorer sleep health-including later/more variable sleep timing, later chronotype preference, more insomnia symptoms, and lower sleep efficiency-were associated with stronger and more widespread BOLD activations in fronto-parietal and subcortical brain regions during cognitive control processing (adjusted for age, sex, education, and fMRI task performance). Most associations were found for reactive cognitive control activation, indicating that poorer sleep health is linked to a "hyper-reactive" brain state. Analysis of time-on-task effects showed that, with longer time on task, poorer sleep health was predominantly associated with increased proactive cognitive control activation, indicating recruitment of additional neural resources over time. Finally, shorter objective sleep duration was associated with lower BOLD activation with time on task and poorer task performance. In conclusion, even in "normal sleepers," relatively poorer sleep health is associated with altered cognitive control processing, possibly reflecting compensatory mechanisms and/or inefficient neural processing.


Assuntos
Encéfalo , Transtornos do Sono-Vigília , Feminino , Humanos , Adulto , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Sono/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Imageamento por Ressonância Magnética
6.
Neuroimage ; 266: 119816, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528311

RESUMO

Preterm birth with very low birth weight (VLBW) confers heightened risk for perinatal brain injury and long-term cognitive deficits, including a reduction in IQ of up to one standard deviation. Persisting gray and white matter aberrations have been documented well into adolescence and adulthood in preterm born individuals. What has not been documented so far is a plausible causal link between reductions in cortical surface area or subcortical brain structure volumes, and the observed reduction in IQ. The NTNU Low Birth Weight in a Lifetime Perspective study is a prospective longitudinal cohort study, including a preterm born VLBW group (birthweight ≤1500 g) and a term born control group. Structural magnetic resonance imaging data were obtained from 38 participants aged 19, born preterm with VLBW, and 59 term-born peers. The FreeSurfer software suite was used to obtain measures of cortical thickness, cortical surface area, and subcortical brain structure volumes. Cognitive ability was estimated using the Wechsler Adult Intelligence Scale, 3rd Edition, including four IQ-indices: Verbal comprehension, Working memory, Perceptual organization, and Processing speed. Statistical mediation analyses were employed to test for indirect effects of preterm birth with VLBW on IQ, mediated by atypical brain structure. The mediation analyses revealed negative effects of preterm birth with VLBW on IQ that were partially mediated by reduced surface area in multiple regions of frontal, temporal, parietal and insular cortex, and by reductions in several subcortical brain structure volumes. The analyses did not yield sufficient evidence of mediation effects of cortical thickness on IQ. This is, to our knowledge, the first time a plausible causal relationship has been established between regional cortical area reductions, as well as reductions in specific subcortical and cerebellar structures, and general cognitive ability in preterm born survivors with VLBW.


Assuntos
Nascimento Prematuro , Feminino , Adolescente , Humanos , Recém-Nascido , Adulto Jovem , Adulto , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Recém-Nascido de muito Baixo Peso , Imageamento por Ressonância Magnética
7.
Hum Brain Mapp ; 44(2): 691-709, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189786

RESUMO

Whether head size and/or biological sex influence proxies of white matter (WM) microstructure such as fractional anisotropy (FA) and mean diffusivity (MD) remains controversial. Diffusion tensor imaging (DTI) indices are also associated with age, but there are large discrepancies in the spatial distribution and timeline of age-related differences reported. The aim of this study was to evaluate the associations between intracranial volume (ICV), sex, and age and DTI indices from WM in a population-based study of healthy individuals (n = 812) aged 50-66 in the Nord-Trøndelag health survey. Semiautomated tractography and tract-based spatial statistics (TBSS) analyses were performed on the entire sample and in an ICV-matched sample of men and women. The tractography results showed a similar positive association between ICV and FA in all major WM tracts in men and women. Associations between ICV and MD, radial diffusivity and axial diffusivity were also found, but to a lesser extent than FA. The TBSS results showed that both men and women had areas of higher and lower FA when controlling for age, but after controlling for age and ICV only women had areas with higher FA. The ICV matched analysis also demonstrated that only women had areas of higher FA. Age was negatively associated with FA across the entire WM skeleton in the TBSS analysis, independent of both sex and ICV. Combined, these findings demonstrated that both ICV and sex contributed to variation in DTI indices and emphasized the importance of considering ICV as a covariate in DTI analysis.


Assuntos
Substância Branca , Masculino , Pessoa de Meia-Idade , Humanos , Adulto , Feminino , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Tamanho do Órgão , Anisotropia , Encéfalo/diagnóstico por imagem
8.
Int J Geriatr Psychiatry ; 38(7): e5967, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37475192

RESUMO

BACKGROUND: Research shows that retirement age is associated with later-life cognition but has not sufficiently distinguished between retirement pathways. We examined how retirement age was associated with later-life dementia and mild cognitive impairment (MCI) for people who retired via the disability pathway (received a disability pension prior to old-age pension eligibility) and those who retired via the standard pathway. METHODS: The study sample comprised 7210 participants from the Norwegian Trøndelag Health Study (HUNT4 70+, 2017-2019) who had worked for at least one year in 1967-2019, worked until age 55+, and retired before HUNT4. Dementia and MCI were clinically assessed in HUNT4 70+ when participants were aged 69-85 years. Historical data on participants' retirement age and pathway were retrieved from population registers. We used multinomial regression to assess the dementia/MCI risk for women and men retiring via the disability pathway, or early (<67 years), on-time (age 67, old-age pension eligibility) or late (age 68+) via the standard pathway. RESULTS: In our study sample, 9.5% had dementia, 35.3% had MCI, and 28.1% retired via the disability pathway. The disability retirement group had an elevated risk of dementia compared to the on-time standard retirement group (relative risk ratio [RRR]: 1.64, 95% CI 1.14-2.37 for women, 1.70, 95% CI 1.17-2.48 for men). MCI risk was lower among men who retired late versus on-time (RRR, 0.76, 95% CI 0.61-0.95). CONCLUSION: Disability retirees should be monitored more closely, and preventive policies should be considered to minimize the dementia risk observed among this group of retirees.


Assuntos
Disfunção Cognitiva , Demência , Pessoas com Deficiência , Masculino , Humanos , Feminino , Aposentadoria/psicologia , Disfunção Cognitiva/epidemiologia , Risco , Demência/epidemiologia
9.
Acta Paediatr ; 112(4): 753-761, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627478

RESUMO

AIM: To investigate visual function and neurodevelopment in a geographically defined population cohort of school-aged children born extremely preterm. METHODS: All children born extremely preterm in Central Norway between 2006 and 2011 (n=65) were identified, and 36 (median age, min/max: 13, 10/16) were included. Best-corrected visual acuity (BCVA), contrast sensitivity (four spatial frequencies), parent-reported challenges and neuropsychological testing in learning, executive functions, motor skills, perception, reaction time, working and visual memory, processing speed, and pattern separation were measured. Brain MRI (3T) was acquired and read by a neuroradiologist. RESULTS: Median (min/max) BCVA letter score was 85 (35/91) in the better and 82 (13/89) in the worse eye. ROP participants (n=7) had lower contrast sensitivity in the two highest spatial frequencies (p = 0.024 and p = 0.004). Parent-reported challenges correlated negatively with BCVA (learning: p = 0.014; executive functions: p = 0.002; motor skills: p = 0.000; and perception: p = 0.001), while motor skills correlated negatively with one (p = 0.010) and perception with two (p = 0.003 and p = 0.009) of four spatial frequencies. Neuropsychological tests were reduced relative to norms. None had MRI-verified preterm brain injury. CONCLUSION: Visual function was subnormal and correlated with parent-reported challenges in a small cohort of extremely preterm school-aged children, indicating that visual function may be a marker of neurodevelopmental outcomes.


Assuntos
Lactente Extremamente Prematuro , Destreza Motora , Recém-Nascido , Gravidez , Feminino , Humanos , Criança , Parto , Testes Neuropsicológicos , Função Executiva
10.
Neuroimage ; 256: 119226, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447353

RESUMO

Physical inactivity has been identified as an important risk factor for dementia. High levels of cardiorespiratory fitness (CRF) have been shown to reduce the risk of dementia. However, the mechanism by which exercise affects brain health is still debated. Fractal dimension (FD) is an index that quantifies the structural complexity of the brain. The purpose of this study was to investigate the effects of a 5-year exercise intervention on the structural complexity of the brain, measured through the FD, in a subset of 105 healthy older adults participating in the randomized controlled trial Generation 100 Study. The subjects were randomized into control, moderate intensity continuous training, and high intensity interval training groups. Both brain MRI and CRF were acquired at baseline and at 1-, 3- and 5-years follow-ups. Cortical thickness and volume data were extracted with FreeSurfer, and FD of the cortical lobes, cerebral and cerebellar gray and white matter were computed. CRF was measured as peak oxygen uptake (VO2peak) using ergospirometry during graded maximal exercise testing. Linear mixed models were used to investigate exercise group differences and possible CRF effects on the brain's structural complexity. Associations between change over time in CRF and FD were performed if there was a significant association between CRF and FD. There were no effects of group membership on the structural complexity. However, we found a positive association between CRF and the cerebral gray matter FD (p < 0.001) and the temporal lobe gray matter FD (p < 0.001). This effect was not present for cortical thickness, suggesting that FD is a more sensitive index of structural changes. The change over time in CRF was associated with the change in temporal lobe gray matter FD from baseline to 5-year follow-up (p < 0.05). No association of the change was found between CRF and cerebral gray matter FD. These results demonstrated that entering old age with high and preserved CRF levels protected against loss of structural complexity in areas sensitive to aging and age-related pathology.


Assuntos
Encéfalo , Demência , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Demência/patologia , Terapia por Exercício , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais
11.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615640

RESUMO

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Imageamento por Ressonância Magnética , Transtornos Mentais , Transtornos do Neurodesenvolvimento , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
12.
Mol Psychiatry ; 26(8): 3876-3883, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32047264

RESUMO

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.


Assuntos
Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Putamen , Tálamo
13.
Mol Psychiatry ; 25(11): 3053-3065, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30279459

RESUMO

The hippocampus is a heterogeneous structure, comprising histologically distinguishable subfields. These subfields are differentially involved in memory consolidation, spatial navigation and pattern separation, complex functions often impaired in individuals with brain disorders characterized by reduced hippocampal volume, including Alzheimer's disease (AD) and schizophrenia. Given the structural and functional heterogeneity of the hippocampal formation, we sought to characterize the subfields' genetic architecture. T1-weighted brain scans (n = 21,297, 16 cohorts) were processed with the hippocampal subfields algorithm in FreeSurfer v6.0. We ran a genome-wide association analysis on each subfield, co-varying for whole hippocampal volume. We further calculated the single-nucleotide polymorphism (SNP)-based heritability of 12 subfields, as well as their genetic correlation with each other, with other structural brain features and with AD and schizophrenia. All outcome measures were corrected for age, sex and intracranial volume. We found 15 unique genome-wide significant loci across six subfields, of which eight had not been previously linked to the hippocampus. Top SNPs were mapped to genes associated with neuronal differentiation, locomotor behaviour, schizophrenia and AD. The volumes of all the subfields were estimated to be heritable (h2 from 0.14 to 0.27, all p < 1 × 10-16) and clustered together based on their genetic correlations compared with other structural brain features. There was also evidence of genetic overlap of subicular subfield volumes with schizophrenia. We conclude that hippocampal subfields have partly distinct genetic determinants associated with specific biological processes and traits. Taking into account this specificity may increase our understanding of hippocampal neurobiology and associated pathologies.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Hipocampo/anatomia & histologia , Hipocampo/patologia , Neuroimagem , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
14.
Pituitary ; 24(5): 737-745, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33973151

RESUMO

PURPOSE: The main aim of this study was to provide normative data for pituitary height and volume in persons between 50 and 66 years in the general population. The secondary aim was to establish a convenient surrogate marker of pituitary size for use in routine radiological practice. METHODS: From a geographically defined prospective healthy study, 1006 participants between 50 and 66 years had a brain MRI, of which 988 (519 women) were included in this study. We measured the mid-sagittal height, max-sagittal height and total volume of the anterior pituitary lobe based on T1-weighted 3D MRI images. RESULTS: Both the mean mid-sagittal and max-sagittal pituitary height were significantly larger in women compared to men, with 4.9 ± 1.7 mm versus 4.4 ± 1.4 mm (p < .001) for the mean mid-sagittal height and 6.8 ± 1.2 mm versus 6.1 ± 1.1 mm (p < 0.001) for the mean max-sagittal height. The mean anterior pituitary lobe volume was also significantly larger in women than in men (494 ± 138 mm3 vs. 405 ± 118 mm3) (p < 0.001). There were no significant differences in these pituitary sagittal heights nor volume in either sex between the age groups 50-54, 55-59 and 60-66 years. The 95th percentile for mid-sagittal height, max-sagittal height and pituitary volume was 7.7 mm, 8.6 mm and 851 mm3 for women and 6.6 mm, 7.8 mm and 610 mm3 for men. CONCLUSION: This study show that women have a larger pituitary gland than men in the age group between 50 and 66 years and provides normative data for pituitary size estimates which can be used for clinical diagnostic purposes as well as future research.


Assuntos
Doenças da Hipófise , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Hipófise/diagnóstico por imagem , Estudos Prospectivos
15.
Arch Phys Med Rehabil ; 102(6): 1102-1112, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33127352

RESUMO

OBJECTIVE: To describe personal factors in patients with mild traumatic brain injury (MTBI) and 2 control groups and to explore how such factors were associated with postconcussion symptoms (PCSs). DESIGN: Prospective cohort study. SETTING: Level 1 trauma center and outpatient clinic. PARTICIPANTS: Participants (N=541) included patients with MTBI (n=378), trauma controls (n=82), and community controls (n=81). MAIN OUTCOME MEASURES: Data on preinjury health and work status, personality, resilience, attention deficit/hyperactivity, and substance use. Computed tomography (CT) findings and posttraumatic amnesia were recorded. Symptoms were assessed at 3 months with the British Columbia Postconcussion Symptom Inventory and labeled as PCS+ if ≥3 symptoms were reported or the total score was ≥13. Predictive models were fitted with penalized logistic regression using the least absolute shrinkage and selection operator (lasso) in the MTBI group, and model fit was assessed with optimism-corrected area under the curve (AUC) of the receiver operating characteristic curve. RESULTS: There were few differences in personal factors between the MTBI group and the 2 control groups without MTBI. Rates of PCS+ were 20.8% for the MTBI group, 8.0% for trauma controls, and 1.3% for community controls. In the MTBI group, there were differences between the PCS+ and PCS- group on most personal factors and injury-related variables in univariable comparisons. In the lasso models, the optimism-corrected AUC for the full model was 0.79, 0.73 for the model only including personal factors, and 0.63 for the model only including injury variables. Working less than full time before injury, having preinjury pain and poor sleep quality, and being female were among the selected predictors, but also resilience and some personality traits contributed in the model. Intracranial abnormalities on CT were also a risk factor for PCS. CONCLUSIONS: Personal factors convey important prognostic information in patients with MTBI. A vulnerable work status and preinjury health problems might indicate a need for follow-up and targeted interventions.


Assuntos
Lesões Encefálicas Traumáticas/psicologia , Síndrome Pós-Concussão/psicologia , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Lesões Encefálicas Traumáticas/reabilitação , Estudos de Casos e Controles , Emprego/psicologia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Personalidade , Síndrome Pós-Concussão/reabilitação , Estudos Prospectivos , Resiliência Psicológica , Fatores de Risco , Transtornos Relacionados ao Uso de Substâncias/psicologia
16.
Cereb Cortex ; 29(9): 3879-3890, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357317

RESUMO

The human cerebral cortex is highly regionalized, and this feature emerges from morphometric gradients in the cerebral vesicles during embryonic development. We tested if this principle of regionalization could be traced from the embryonic development to the human life span. Data-driven fuzzy clustering was used to identify regions of coordinated longitudinal development of cortical surface area (SA) and thickness (CT) (n = 301, 4-12 years). The principal divide for the developmental SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the major embryonic morphometric anterior-posterior (AP) gradient. Embryonic factors showing a clear AP gradient were identified, and we found significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each identified developmental SA and CT clusters showed distinguishable life span trajectories in a larger longitudinal dataset (4-88 years, 1633 observations), and the SA and CT clusters showed differential relationships to cognitive functions. This means that regions that developed together in childhood also changed together throughout life, demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an adult twin sample. In conclusion, the development of cortical regionalization is a continuous process from the embryonic stage throughout life.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
17.
Arch Phys Med Rehabil ; 101(1): 72-80, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562876

RESUMO

OBJECTIVE: To investigate whether cognitive reserve moderates differences in cognitive functioning between patients with mild traumatic brain injury (MTBI) and controls without MTBI and to examine whether patients with postconcussion syndrome have lower cognitive functioning than patients without postconcussion syndrome at 2 weeks and 3 months after injury. DESIGN: Trondheim MTBI follow-up study is a longitudinal controlled cohort study with cognitive assessments 2 weeks and 3 months after injury. SETTING: Recruitment at a level 1 trauma center and at a general practitioner-run, outpatient clinic. PARTICIPANTS: Patients with MTBI (n=160) according to the World Health Organization criteria, trauma controls (n=71), and community controls (n=79) (N=310). MAIN OUTCOME MEASURES: A cognitive composite score was used as outcome measure. The Vocabulary subtest was used as a proxy of cognitive reserve. Postconcussion syndrome diagnosis was assessed at 3 months with the British Columbia Postconcussion Symptom Inventory. RESULTS: Linear mixed models demonstrated that the effect of vocabulary scores on the cognitive composite scores was larger in patients with MTBI than in community controls at 2 weeks and at 3 months after injury (P=.001). Thus, group differences in the cognitive composite score varied as a function of vocabulary scores, with the biggest differences seen among participants with lower vocabulary scores. There were no significant differences in the cognitive composite score between patients with (n=29) and without (n=131) postconcussion syndrome at 2 weeks or 3 months after injury. CONCLUSION: Cognitive reserve, but not postconcussion syndrome, was associated with cognitive outcome after MTBI. This supports the cognitive reserve hypothesis in the MTBI context and suggests that persons with low cognitive reserve are more vulnerable to reduced cognitive functioning if they sustain an MTBI.


Assuntos
Concussão Encefálica/psicologia , Disfunção Cognitiva/psicologia , Reserva Cognitiva , Síndrome Pós-Concussão/psicologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Modelos Lineares , Estudos Longitudinais , Masculino , Fatores de Risco
18.
Neuroimage ; 203: 116158, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31493533

RESUMO

Even though age-related white matter hyperintensities (WMH) begin to emerge in middle age, their effect on brain micro- and macrostructure in this age group is not fully elucidated. We have examined how presence of WMH and load of WMH affect regional brain volumes and microstructure in a validated, representative general population sample of 873 individuals between 50 and 66 years. Presence of WMH was determined as Fazakas grade ≥1. WMH load was WMH volume from manual tracing of WMHs divided on intracranial volume. The impact of age appropriate WMH (Fazakas grade 1) on the brain was also investigated. Major novel findings were that even the age appropriate WMH group had widespread macro- and microstructural changes in gray and white matter, showing that the mere presence of WMH, not just WMH load is an important clinical indicator of brain health. With increasing WMH load, structural changes spread centrifugally. Further, we found three major patterns of FA and MD changes related to increasing WMH load, demonstrating a heterogeneous effect on white matter microstructure, where distinct patterns were found in the proximity of the lesions, in deep white matter and in white matter near the cortex. This study also raises several questions about the onset of WMH related pathology, in particular, whether some of the aberrant brain structural and microstructural findings are present before the emergence of WMH. We also found, similar to other studies, that WMH risk factors had low explanatory power for WMH, making it unclear which factors lead to WMH.


Assuntos
Encéfalo/patologia , Substância Branca/patologia , Idoso , Envelhecimento/patologia , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
19.
Neuroimage ; 188: 217-227, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30502447

RESUMO

Development of the cerebral cortex may be affected by aberrant white matter development. Preterm birth with very low birth weight (VLBW) has been associated with reduced fractional anisotropy of white matter and changes in cortical thickness and surface area. We use a new methodological approach to combine white and gray matter data and test the hypothesis that white matter injury is primary, and acts as a mediating factor for concomitant gray matter aberrations, in the developing VLBW brain. T1 and dMRI data were obtained from 47 young adults born preterm with VLBW and 73 term-born peers (mean age = 26). Cortical thickness was measured across the cortical mantle and compared between the groups, using the FreeSurfer software suite. White matter pathways were reconstructed with the TRACULA software and projected to their cortical end regions, where cortical thickness was averaged. In the VLBW group, cortical thickness was increased in anteromedial frontal, orbitofrontal, and occipital regions, and fractional anisotropy (FA) was reduced in frontal lobe pathways, indicating compromised white matter integrity. Statistical mediation analyses demonstrated that increased cortical thickness in the frontal regions was mediated by reduced FA in the corpus callosum forceps minor, consistent with the notion that white matter injury can disrupt frontal lobe cortical development. Combining statistical mediation analysis with pathway projection onto the cortical surface offers a powerful novel tool to investigate how cortical regions are differentially affected by white matter injury.


Assuntos
Córtex Cerebral/patologia , Recém-Nascido de muito Baixo Peso , Nascimento Prematuro/patologia , Substância Branca/patologia , Adulto , Anisotropia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Humanos , Masculino , Substância Branca/crescimento & desenvolvimento , Substância Branca/lesões
20.
J Neurosci Res ; 97(5): 568-581, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30675907

RESUMO

Aims of this study were to investigate white matter (WM) and thalamus microstructure 72 hr and 3 months after mild traumatic brain injury (TBI) with diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI), and to relate DKI and DTI findings to postconcussional syndrome (PCS). Twenty-five patients (72 hr = 24; 3 months = 23) and 22 healthy controls were recruited, and DKI and DTI data were analyzed with Tract-Based Spatial Statistics (TBSS) and a region-of-interest (ROI) approach. Patients were categorized into PCS or non-PCS 3 months after injury according to the ICD-10 research criteria for PCS. In TBSS analysis, significant differences between patients and controls were seen in WM, both in the acute stage and 3 months after injury. Fractional anisotropy (FA) reductions were more widespread than kurtosis fractional anisotropy (KFA) reductions in the acute stage, while KFA reductions were more widespread than the FA reductions at 3 months, indicating the complementary roles of DKI and DTI. When comparing patients with PCS (n = 9), without PCS (n = 16), and healthy controls, in the ROI analyses, no differences were found in the acute DKI and DTI metrics. However, near-significant differences were observed for several DKI metrics obtained in WM and thalamus concurrently with symptom assessment (3 months after injury). Our findings indicate a combined utility of DKI and DTI in detecting WM microstructural alterations after mild TBI. Moreover, PCS may be associated with evolving alterations in brain microstructure, and DKI may be a promising tool to detect such changes.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Síndrome Pós-Concussão/diagnóstico por imagem , Adulto , Anisotropia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Pós-Concussão/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA