Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 108(35): 14449-54, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21844371

RESUMO

The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Actinas/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Humanos , Lipossomos/química , Transdução de Sinais
2.
EMBO J ; 27(1): 51-61, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18079698

RESUMO

Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.


Assuntos
Ciclo Celular/fisiologia , DNA Glicosilases/metabolismo , Proteína de Replicação A/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Bovinos , DNA Glicosilases/química , DNA Glicosilases/genética , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína de Replicação A/fisiologia , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treonina/metabolismo , Uracila/metabolismo
3.
J Am Soc Mass Spectrom ; 19(8): 1156-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18555696

RESUMO

Electron detachment dissociation (EDD) of peptide poly-anions is gentle towards post-translational modifications (PTMs) and produces predictable and interpretable fragment ion types (a., x ions). However, EDD is considered an inefficient fragmentation technique and has not yet been implemented in large-scale peptide characterization strategies. We successfully increased the EDD fragmentation efficiency (up to 9%), and demonstrate for the first time the utility of EDD-MS/MS in liquid chromatography time-scale experiments. Peptides and phosphopeptides were analyzed in both positive- and negative-ion mode using electron capture/transfer dissociation (ECD/ETD) and EDD in comparison. Using approximately 1 pmol of a BSA tryptic digest, LC-EDD-MS/MS sequenced 14 peptides (27% aa sequence coverage) and LC-ECD-MS/MS sequenced 19 peptides (39% aa sequence coverage). Seven peptides (18% aa sequence coverage) were sequenced by both EDD and ECD. The relative small overlap of identified BSA peptides demonstrates the complementarity of the two dissociation modes. Phosphopeptide mixtures from three trypsin-digested phosphoproteins were subjected to LC-EDD-MS/MS resulting in the identification of five phospho-peptides. Of those, one was not found in a previous study using a similar sample and LC-ETD-MS/MS in the positive-ion mode. In this study, the ECD fragmentation efficiency (15.7% av.) was superior to the EDD fragmentation efficiency (3.6% av.). However, given the increase in amino acid sequence coverage and extended PTM characterization the new regime of EDD in combination with other ion-electron fragmentation techniques in the positive-ion mode is a step towards a more comprehensive strategy of analysis in proteome research.


Assuntos
Peptídeos/química , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Elétrons , Dados de Sequência Molecular , Fosfopeptídeos/química , Processamento de Proteína Pós-Traducional , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
4.
J Proteome Res ; 8(3): 1610-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19178303

RESUMO

Given the complexity of the mammalian proteome, high-resolution separation technologies are required to achieve comprehensive proteome coverage and to enhance the detection of low-abundance proteins. Among several technologies, Multidimensional Protein Identification Technology (MudPIT) enables the on-line separation of highly complex peptide mixtures directly coupled with mass spectrometry-based identification. Here, we present a variation of the traditional MudPIT protocol, combining highly sensitive chromatography using a nanoflow liquid chromatography system (nano-LC) with a two-dimensional precolumn in a vented column setup. When compared to the traditional MudPIT approach, this nanoflow variation demonstrated better first-phase separation leading to more proteins being characterized while using rather simple instrumentation and a protocol that requires less time and very little technical expertise to perform.


Assuntos
Cromatografia Líquida/métodos , Miócitos Cardíacos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Células Cultivadas , Cromatografia Líquida/instrumentação , Camundongos , Nanotecnologia
5.
J Proteome Res ; 7(8): 3159-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18578518

RESUMO

Reversed-phase liquid chromatography interfaced to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) allows analysis of very complex peptide mixtures at great sensitivity, but it can be very time-consuming, typically using 60 min, or more, per sample analysis. We recently introduced the isocratic solid phase extraction-liquid chromatography (SPE-LC) technology for rapid separation (~8 min) of simple peptide samples. We now extend these studies to demonstrate the potential of SPE-LC separation in combination with a hybrid linear ion trap-Orbitrap tandem mass spectrometer for efficient analysis of peptide samples in proteomics research. The system performance of SPE-LC-MS/MS was evaluated in terms of sensitivity and efficiency for the analysis of tryptic peptide digests obtained from samples consisting of up to 12 standard proteins. The practical utility of the analytical setup was demonstrated by the analysis of <15 microg depleted human serum proteome by a combination of SDS-PAGE and SPE-LC-MS/MS. A total of 88 unique gene products spanning 3 orders of magnitude in serum protein concentration were identified using stringent database search criteria.


Assuntos
Peptídeos/análise , Proteínas/análise , Animais , Proteínas Sanguíneas/análise , Bovinos , Galinhas , Cromatografia Líquida/instrumentação , Bases de Dados Factuais , Humanos , Proteômica , Sensibilidade e Especificidade , Soro , Extração em Fase Sólida/instrumentação , Espectrometria de Massas em Tandem
6.
Proteomics ; 7(11): 1825-38, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17474145

RESUMO

The mechanisms that regulate the maintenance of stem cell self-renewal versus differentiation are complex and remain mostly unknown. Understanding neurogenesis and neural cell differentiation presents a unique challenge for the treatment of nervous system disorders. To gain more insight into molecular mechanisms of the differentiation of neural cells, we combined the advantage of porcine fetal neural stem cells (NSCs) in vitro differentiation model and proteomic analysis. Using 2-DE followed by MS, we profiled constituent proteins of NSCs and their differentiated progenies at first and then indicated protein species that were significantly up- or down-regulated during the differentiation. The largest identified group of constituent proteins was related to RNA and protein metabolism and processing, including chaperones, and the second largest consisted of proteins involved in cell organization (cytoskeleton and annexins). Differentiation of neural cells was found to be accompanied by changes in the expression of proteins involved in DNA and RNA binding, mRNA processing and transport, stress responses, iron storage, and redox regulation. Additional immunoblot analysis verified the induction of alpha-B crystallin and heterogeneous nuclear ribonucleoproteins (hnRNPs) A1 and A2/B1. Furthermore, immunocytochemistry demonstrated specific localization of alpha-B crystallin in the cytoplasm or nucleus of glial cells and confirmed cellular expression patterns of hnRNPs A1 and A2/B1. These findings represent a significant step towards understanding neural cell differentiation and identification of the regulatory proteins associated with this process.


Assuntos
Diferenciação Celular/fisiologia , Neurônios/fisiologia , Proteômica , Células-Tronco/fisiologia , Animais , Encéfalo/citologia , Células Cultivadas , Eletroforese em Gel Bidimensional , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Espectrometria de Massas , Neurônios/citologia , Células-Tronco/citologia , Suínos , Cadeia B de alfa-Cristalina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA