Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Genomics ; 17(1): 24, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941667

RESUMO

BACKGROUND: Moyamoya angiopathy (MMA) is a rare cerebrovascular condition leading to stroke. Mutations in 15 genes have been identified in Mendelian forms of MMA, but they explain only a very small proportion of cases. Our aim was to investigate the genetic basis of MMA in consanguineous patients having unaffected parents in order to identify genes involved in autosomal recessive MMA. METHODS: Exome sequencing (ES) was performed in 6 consecutive consanguineous probands having MMA of unknown etiology. Functional consequences of variants were assessed using western blot and protein 3D structure analyses. RESULTS: Causative homozygous variants of NOS3, the gene encoding the endothelial nitric oxide synthase (eNOS), and GUCY1A3, the gene encoding the alpha1 subunit of the soluble guanylate cyclase (sGC) which is the major nitric oxide (NO) receptor in the vascular wall, were identified in 3 of the 6 probands. One NOS3 variant (c.1502 + 1G > C) involves a splice donor site causing a premature termination codon and leads to a total lack of eNOS in endothelial progenitor cells of the affected proband. The other NOS3 variant (c.1942 T > C) is a missense variant located into the flavodoxine reductase domain; it is predicted to be destabilizing and shown to be associated with a reduction of eNOS expression. The GUCY1A3 missense variant (c.1778G > A), located in the catalytic domain of the sGC, is predicted to disrupt the tridimensional structure of this domain and to lead to a loss of function of the enzyme. Both NOS3 mutated probands suffered from an infant-onset and severe MMA associated with posterior cerebral artery steno-occlusive lesions. The GUCY1A3 mutated proband presented an adult-onset MMA associated with an early-onset arterial hypertension and a stenosis of the superior mesenteric artery. None of the 3 probands had achalasia. CONCLUSIONS: We show for the first time that biallelic loss of function variants in NOS3 is responsible for MMA and that mutations in NOS3 and GUCY1A3 are causing fifty per cent of MMA in consanguineous patients. These data pinpoint the essential role of the NO pathway in MMA pathophysiology.


Assuntos
Doença de Moyamoya , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Guanilil Ciclase Solúvel , Adulto , Humanos , Doença de Moyamoya/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Transdução de Sinais/genética , Guanilil Ciclase Solúvel/genética
2.
Cell Commun Signal ; 18(1): 94, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546175

RESUMO

BACKGROUND: Endothelial progenitor cells (EPCs) are non-differentiated endothelial cells (ECs) present in blood circulation that are involved in neo-vascularization and correction of damaged endothelial sites. Since EPCs from patients with vascular disorders are impaired and inefficient, allogenic sources from adult or cord blood are considered as good alternatives. However, due to the reaction of immune system against allogenic cells which usually lead to their elimination, we focused on the exact role of EPCs on immune cells, particularly, T cells which are the most important cells applied in immune rejection. TNFα is one of the main activators of EPCs that recognizes two distinct receptors. TNFR1 is expressed ubiquitously and its interaction with TNFα leads to differentiation and apoptosis, whereas, TNFR2 is expressed predominantly on ECs, immune cells and neural cells and is involved in cell survival and proliferation. Interestingly, it has been shown that different immunosuppressive cells express TNFR2 and this is directly related to their immunosuppressive efficiency. However, little is known about immunological profile and function of TNFR2 in EPCs. METHODS: Using different in-vitro combinations, we performed co-cultures of ECs and T cells to investigate the immunological effect of EPCs on T cells. We interrupted in the TNFα/TNFR2 axis either by blocking the receptor using TNFR2 antagonist or blocking the ligand using T cells derived from TNFα KO mice. RESULTS: We demonstrated that EPCs are able to suppress T cell proliferation and modulate them towards less pro-inflammatory and active phenotypes. Moreover, we showed that TNFα/TNFR2 immune-checkpoint pathway is critical in EPC immunomodulatory effect. CONCLUSIONS: Our results reveal for the first time a mechanism that EPCs use to suppress immune cells, therefore, enabling them to form new immunosuppressive vessels. Furthermore, we have shown the importance of TNFα/TNFR2 axis in EPCs as an immune checkpoint pathway. We believe that targeting TNFR2 is especially crucial in cancer immune therapy since it controls two crucial aspects of tumor microenvironment: 1) Immunosuppression and 2) Angiogenesis. Video Abstract. (MP4 46355 kb).


Assuntos
Células Progenitoras Endoteliais , Terapia de Imunossupressão , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/imunologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Técnicas de Cocultura , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/imunologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
3.
PLoS One ; 14(5): e0216602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075112

RESUMO

Endothelial dysfunction (ED) is part of the first steps in the development of cardiovascular diseases (CVD). Growth Differentiation Factor 15 (GDF15) is a cytokine belonging to the Transforming Growth Factor ß superfamily and its expression is increased both during ED and in CVD. Because high blood levels of GDF15 have been reported during ED, we hypothesized that GDF15 could be produced by endothelial cells in response to a vascular stress, possibly to attenuate endothelial function loss. Since senescence is mainly involved in both vascular stress and endothelial function loss, we used Endothelial Colony Forming Cells generated from adult blood (AB-ECFCs) as a model of endothelial cells to investigate GDF15 expression during cellular senescence. Then, we analyzed the potential role of GDF15 in AB-ECFC functions and senescence. When AB-ECFCs become senescent, they secrete increased levels of GDF15. We investigated GDF15 paracrine effects on non-senescent AB-ECFCs and showed that GDF15 enhanced proliferation, migration, NO production and activated several signaling pathways including AKT, ERK1/2 and SMAD2 without triggering any oxidative stress. Taken together, our results suggest that GDF15 production by senescent AB-ECFCs could act in a paracrine manner on non-senescent AB-ECFCs, and that this interaction could be beneficial to its model cells. Therefore, GDF15 could play a beneficial role in a dysfunctional vascular system as previously reported in patients with CVD, by limiting ED related to vascular stress occurring in these diseases.


Assuntos
Células Sanguíneas/citologia , Células Endoteliais/citologia , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Adulto , Idoso , Células Sanguíneas/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Células Endoteliais/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Estresse Oxidativo , Transdução de Sinais , Regulação para Cima , Adulto Jovem
4.
Stem Cell Res ; 21: 148-159, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28499264

RESUMO

Endothelial progenitor cells (EPCs) generate in vitro Endothelial Colony Forming Cells (ECFCs) combining features of endothelial and stem/progenitor cells. Their angiogenic properties confer them a therapeutic potential for treating ischemic lesions. They may be isolated from umbilical cord blood (CB-ECFCs) or peripheral adult blood (AB-ECFCs). It is generally accepted that CB-ECFCs are more clonogenic, proliferative and angiogenic than AB-ECFCs. Nevertheless, only a few studies have focused on the functional heterogeneity of CB-ECFCs from different individuals. Moreover, AB-ECFC loss of function is yet to be precisely described. We have focused on these two issues that are critical for clinical perspectives. The detailed clonogenic profile of CB-ECFCs and AB-ECFCs was obtained and revealed a high inter individual heterogeneity and the absence of correlation with age. Most CB-ECFCs yielded initial colonies and had functional properties similar to those of AB-ECFCs. Conversely, a high clonogenicity was associated with an enhanced proliferative and angiogenic potential and stemness gene overexpression, confirming that immaturity, lost by AB-ECFCs, was a prerequisite to functionality. We thus demonstrated the importance of selecting CB-ECFCs according to specific criteria, and we propose using the initial clonogenicity as a relevant marker of their potential efficacy on vascular repair.


Assuntos
Diferenciação Celular , Células Progenitoras Endoteliais/citologia , Adolescente , Adulto , Fatores Etários , Idoso , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Clonais , Colágeno/farmacologia , Ensaio de Unidades Formadoras de Colônias , Combinação de Medicamentos , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Laminina/farmacologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Proteoglicanas/farmacologia , Doadores de Tecidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA