Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Transl Oncol ; 8(4): 295-307, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26310376

RESUMO

Despite considerable progress in recent years, the overall prognosis of metastatic malignant melanoma remains poor, and curative therapeutic options are lacking. Therefore, better understanding of molecular mechanisms underlying melanoma progression and metastasis, as well as identification of novel therapeutic targets that allow inhibition of metastatic spread, are urgently required. The current study provides evidence for aberrant cyclin-dependent kinase 5 (CDK5) activation in primary and metastatic melanoma lesions by overexpression of its activator protein CDK5R1/p35. Moreover, using melanoma in vitro model systems, shRNA-mediated inducible knockdown of CDK5 was found to cause marked inhibition of cell motility, invasiveness, and anchorage-independent growth, while at the same time net cell growth was not affected. In vivo, CDK5 knockdown inhibited growth of orthotopic xenografts as well as formation of lung and liver colonies in xenogenic injection models mimicking systemic metastases. Inhibition of lung metastasis was further validated in a syngenic murine melanoma model. CDK5 knockdown was accompanied by dephosphorylation and overexpression of caldesmon, and concomitant caldesmon knockdown rescued cell motility and proinvasive phenotype. Finally, it was found that pharmacological inhibition of CDK5 activity by means of roscovitine as well as by a novel small molecule CDK5-inhibitor, N-(5-isopropylthiazol-2-yl)-3-phenylpropanamide, similarly caused marked inhibition of invasion/migration, colony formation, and anchorage-independent growth of melanoma cells. Thus, experimental data presented here provide strong evidence for a crucial role of aberrantly activated CDK5 in melanoma progression and metastasis and establish CDK5 as promising target for therapeutic intervention.

2.
Transl Oncol ; 7(2): 309-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24913676

RESUMO

Recent work has identified dysfunctional Hippo signaling to be involved in maintenance and progression of various human cancers, although data on clear cell renal cell carcinoma (ccRCC) have been limited. Here, we provide evidence implicating aberrant Hippo signaling in ccRCC proliferation, invasiveness, and metastatic potential. Nuclear overexpression of the Hippo target Yes-associated protein (YAP) was found in a subset of patients with ccRCC. Immunostaining was particularly prominent at the tumor margins and highlighted neoplastic cells invading the tumor-adjacent stroma. Short hairpin RNA-mediated knockdown of YAP significantly inhibited proliferation, migration, and anchorage-independent growth of ccRCC cells in soft agar and led to significantly reduced murine xenograft growth. Microarray analysis of YAP knockdown versus mock-transduced ccRCC cells revealed down-regulation of endothelin 1, endothelin 2, cysteine-rich, angiogenic inducer, 61 (CYR61), and c-Myc in ccRCC cells as well as up-regulation of the cell adhesion molecule cadherin 6. Signaling pathway impact analysis revealed activation of the p53 signaling and cell cycle pathways as well as inhibition of mitogen-activated protein kinase signaling on YAP down-regulation. Our data suggest CYR61 and c-Myc as well as signaling through the endothelin axis as bona fide downstream effectors of YAP and establish aberrant Hippo signaling as a potential therapeutic target in ccRCC.

3.
Expert Opin Pharmacother ; 13(14): 2073-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22873789

RESUMO

INTRODUCTION: Pancreatic neuroendocrine tumors (PNET) represent the second most common primary malignancy of the pancreas. Until recently, therapeutic options for advanced PNET have been limited. AREAS COVERED: A recently published Phase III clinical trial demonstrated striking therapeutic activity of the mTOR inhibitor everolimus in advanced PNET and led to its approval for this indication by the FDA. This review discusses this landmark discovery in the context of currently available therapeutic options, pathophysiology and molecular genetics of PNET. EXPERT OPINION: The approval of everolimus for the treatment of PNET marks a major step forward in the clinical management of this disease and represents a notable example of the successful translation of a targeted therapy that was initially developed based on findings at the lab bench, into everyday clinical practice. These results encourage hopes that the overall therapeutic efficacy of such approaches can be further enhanced by the introduction of combinatorial regimens, simultaneously targeting more than one oncogenic signaling pathway, as well as by stratification of patients based on the individual genetic setup of their tumors.


Assuntos
Antineoplásicos/uso terapêutico , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Sirolimo/análogos & derivados , Antineoplásicos/farmacologia , Everolimo , Humanos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA