RESUMO
The purpose of this study was to investigate an influence of vibration waveform on magnetic resonance elastography (MRE). MRE is an innovative imaging technique for the non-invasive quantification of the elasticity of soft tissues through the direct visualization of propagating shear waves in vivo using a special phase-contrast magnetic resonance imaging sequence. Since the elasticity of soft tissue calculates from the wavelength of propagating shear waves, it is necessary to propagate sine-wave-shape shear wave at the target soft tissue. However, due to the various factors; i.e. overload of vibration generator, poor contact between imaging object and vibration pad, etc.; it may be difficult to generate a simple sine wave. This work was focused on change vibration waveforms; i.e. square wave, triangle wave, saw-tooth wave; which is induced by the various factors. Phantom experimental results demonstrated that when square and saw-tooth waveforms of 25 Hz vibration frequency, into the phantom, the waveform of propagating wave was not similar to sine waveform. It may influence on the MRE that in case of the waveforms has low frequency and square or saw-tooth like waveforms.
Assuntos
Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética , Vibração , Elasticidade , Imagens de FantasmasRESUMO
Three-dimensional (3D) magnetic resonance elastography (MRE) is more accurate than two-dimensional (2D) MRE; however, it requires long-term acquisition. This study aimed to reduce the acquisition time of abdominal 3D MRE using a new sample interval modulation (short-SLIM) approach that can acquire all three motions faster while reducing the prolongation of echo time and flow compensation. To this end, two types of phantom studies and an in vivo test of the liver in three healthy volunteers were performed to compare the performances of conventional spin-echo echo-planar (SE-EPI) MRE, conventional SLIM and short-SLIM. One phantom study measured the mean amplitude and shear modulus within the overall region of a homogeneous phantom by changing the mechanical vibration power to assess the robustness to the lowered phase-to-noise ratio in short-SLIM. The other measured the mean shear modulus in the stiff and background materials of a phantom with an embedded stiffer rod to assess the performance of short-SLIM for complex wave patterns with wave interference. The Spearman's rank correlation coefficient was used to assess similarity of elastograms in the rod-embedded phantom and liver between methods. The results of the phantom study changing the vibration power indicated that there was little difference between conventional MRE and short-SLIM. Moreover, the elastogram pattern and the mean shear modulus in the rod-embedded phantom in conventional SLIM and short-SLIM did not change for conventional MRE; the liver test also showed a small difference between the acquisition techniques. This study demonstrates that short-SLIM can provide MRE results comparable to those of conventional MRE. Short-SLIM can reduce the total acquisition time by a factor of 2.25 compared to conventional 3D MRE time, leading to an improvement in the accuracy of shear modulus estimation by suppressing the patient movements.
Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Técnicas de Imagem por Elasticidade/métodos , Fígado/diagnóstico por imagem , Abdome/diagnóstico por imagem , Movimento (Física) , Movimento , Imageamento por Ressonância Magnética/métodosRESUMO
PURPOSE: This study aimed to facilitate research progress in MR elastography (MRE) by providing a versatile and convenient application for MRE reconstruction, namely the MRE research tool (MRE-rTool). It can be used for a series of MRE image analyses, including phase unwrapping, arbitrary bandpass and directional filtering, noise assessment of the wave propagation image (motion SNR), and reconstruction of the elastogram in both 2D and 3D MRE acquisitions. To reinforce the versatility of MRE-rTool, the conventional method of motion SNR was modified into a new method that reflects the effects of image filtering. METHODS: MRE tests of the phantom and liver were performed using different estimation algorithms for stiffness value (algebraic inversion of the differential equation [AIDE], local frequency estimation [LFE] in MRE-rTool, and multimodel direct inversion [MMDI] in clinical reconstruction) and acquiring dimensions (2D and 3D acquisitions). This study also tested the accuracy of masking low SNR regions using modified and conventional motion SNR under various mechanical vibration powers. RESULTS: The stiffness values estimated using AIDE/LFE in MRE-rTool were comparable to that of MMDI (phantom, 3.71 ± 0.74, 3.60 ± 0.32, and 3.60 ± 0.54 kPa in AIDE, LFE, and MMDI; liver, 2.26 ± 0.31, 2.74 ± 0.16, and 2.21 ± 0.26 kPa in AIDE, LFE, and MMDI). The stiffness value in 3D acquisition was independent of the direction of the motion-encoding gradient and was more accurate than that of 2D acquisition. The masking of low SNR regions using the modified motion SNR worked better than that in the conventional motion SNR for each vibration power, especially when using a directional filter. CONCLUSION: The performance of MRE-rTool on test data reached the level required in clinical MRE studies. MRE-rTool has the potential to facilitate MRE research, contribute to the future development of MRE, and has been freely released online.
RESUMO
This study aims to develop and assess a new automated processing technique in MR elastography (MRE), namely coherent-wave auto-selection (CHASE). CHASE enables automatic selection of the region of interest (ROI) for stiffness measurement by extraction of the coherent wave region (CHASE ROI), and it improves the reconstruction of stiffness by a directional filter oriented along the main wave in each pixel (CHASE filtering). In this study, MRE of a phantom and of the liver of four healthy volunteers was performed. To investigate the potential of CHASE, this study assessed the CHASE according to three indices through the phantom study: 1) agreement on the ROI settings between CHASE and expert observers, 2) noise dependency, and 3) effect of the CHASE on stiffness variability within the CHASE ROI. The agreements on the ROI settings were analyzed by Cohen's kappa coefficient (κ). The noise dependency was analyzed by the mean absolute percentage errors (MAPEs) within the ROI between low (20%-80% amplitudes) and high vibration amplitudes (100% amplitude). The stiffness variability was assessed by standard deviation (SD) within the ROI. In the volunteer study, agreements on the ROI settings (or stiffness value) and stiffness variability within the CHASE ROI were assessed using κ-value (or intraclass correlation coefficient: ICC) and coefficient of variation, respectively. The results showed close agreement on the ROI settings and stiffness (κ-value: greater than 0.61 in both the phantom and volunteer studies, ICC: 0.97 in the volunteer study). The MAPEs within the CHASE ROI were much smaller than those in the whole region of the phantom (CHASE ROI vs. the whole region at 20% amplitude: 10.3% vs. 50.8%). Moreover, in both the phantom and volunteer studies, the stiffness variation within the CHASE ROI was smaller in the elastogram processed with CHASE filtering than in the unprocessed one. Our results demonstrated that the CHASE has high robustness against noise and the potential to provide ROI settings for stiffness measurement comparable to expert observers, as well as improve the reconstruction of stiffness.
Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Voluntários Saudáveis , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos TestesRESUMO
This study aimed to analyze the time-course of the physical properties of the psoas major muscle (PM) before and after exercise using magnetic resonance elastography (MRE). Muscle stiffness is one of the important properties associated with muscle function. However, there was no research on the stiffness of the PM after exercise. In this study, we investigated time-course changes of the shear modulus of the PM after exercise. Furthermore, T2 values and apparent diffusion coefficient (ADC), as the additional information associated with muscular physical properties, were also measured simultaneously. Healthy young male volunteers were recruited in this study (n = 9) and they were required to perform a hand-to-knee isometric and unilateral exercise (left side). At each time-point before and after exercise, a set of 3 types of MR scans to measure multiple physical properties of the PM [shear modulus (MRE), T2 values, and ADC] were repeatedly taken. On day 1, a single set MR scan was taken before exercise (pre-exercise MR scan), and 6 sets MR scans were taken (5.5 to 38.0 min after exercise). After about 10-min rest (46.0 to 56.0 min after exercise), 4 sets MR scans were taken (57.5 to 77.0 min after exercise). About 10-min rest was taken again (85.0-95.0 min after exercise), 4 sets MR scans were taken (96.5 to 116.0 min after exercise). On days 2 and 7, a single set MR scan (MRE, T2 value, and ADC) was taken on each experimental day. The data were analyzed as relative changes (%) of the given parameters to the pre-exercise values. The results indicated significant decreases in PM shear modulus up to about 30 min after exercise. Then, it gradually increased and showed significant increases at about 100 min after exercise compared to that before exercise. T2 values and ADC showed significant increases up to about 65 min after exercise compared to those before exercise, and then returned to the pre-exercise values. On days 2 and 7, all values showed no significant changes compared to the pre-exercise values. This study is the first to report the time-course of the physical properties of the PM after exercise.
Assuntos
Técnicas de Imagem por Elasticidade , Imagem de Difusão por Ressonância Magnética , Técnicas de Imagem por Elasticidade/métodos , Exercício Físico/fisiologia , Humanos , Extremidade Inferior , Imageamento por Ressonância Magnética/métodos , Masculino , Músculo Esquelético/fisiologia , Músculos Psoas/diagnóstico por imagem , Músculos Psoas/fisiologiaRESUMO
The purpose of this study was to determine an optimal condition (vibration frequency and image filtering) for stiffness estimation with high accuracy and stiffness measurement with high repeatability in magnetic resonance elastography (MRE) of the supraspinatus muscle. Nine healthy volunteers underwent two MRE exams separated by at least a 30 min break, on the same day. MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 75, 100, and 125 Hz pneumatic vibration. Wave images were processed by a bandpass filter or filter combining bandpass and directional filters (bandpass-directional filter). An observer specified the region of interest (ROI) on clear wave propagation in the supraspinatus muscle, within which the observer measured the stiffness. This study assessed wave image quality according to two indices, as a substitute for the assessment of the accuracy of the stiffness estimation. One is the size of the clear wave propagation area (ROI size used to measure the stiffness) and the other is the qualitative stiffness resolution score in that area. These measurements made by the observer were repeated twice at least one month apart after each MRE exam. This study assessed the intra-examiner and observer repeatability of the stiffness value, ROI size and resolution score in each combination of vibration frequency and image filter. Repeatability of the data was analyzed using the intraclass correlation coefficient (ICC) and 95% limits-of-agreement (LOA) in Bland-Altman analysis. The analyses on intra-examiner and observer repeatability of stiffness indicated that the ICC and 95% LOA were not varied greatly depending on vibration frequency and image filter (intra-examiner repeatability, ICC range, 0.79 to 0.88; 95% LOA range, ±23.95 to ±32.42%, intra-observer repeatability, ICC range, 0.98 to 1.00; 95% LOA range, ±5.10 to ±10.99%). In the analyses on intra-examiner repeatability of ROI size, ICCs were rather low (ranging from: 0.03 to 0.69) while 95% LOA was large in all the combinations of vibration frequency and image filter (ranging from: ±62.66 to ±83.33%). In the analyses on intra-observer repeatability of ROI size, ICCs were sufficiently high in the total combination of vibration frequency and image filter (ranging from 0.80 to 0.87) while the 95% LOAs were better (lower) in the bandpass-directional filter than the bandpass filter (bandpass directional filter vs. bandpass filter, ±28.81 vs. ±54.83% at 75 Hz; ±25.63 vs. ±37.83% at 100 Hz; ±34.51 vs. ±43.36% at 125 Hz). In the analyses on intra-examiner and observer repeatability of resolution score, the mean difference (bias) between the two exams (or observations) was significantly low and there was almost no difference across all the combinations of vibration frequency and image filter (range of bias: -0.11-0.11 and -0.17-0.00, respectively). Additionally, effects of vibration frequency and image filter on wave image quality (ROI size and resolution score) were assessed separately in each exam. Both mean ROI size and resolution score in the bandpass-directional filter were larger than those in the bandpass filter. Among the data in the bandpass-directional filter, mean ROI size was larger at 75 and 100 Hz, and mean resolution score was larger at 100 and 125 Hz. Taking into consideration with the results of repeatability and wave image quality, the present results suggest that optimal vibration frequency and image filter for MRE of the supraspinatus muscles is 100 Hz and bandpass-directional filter, respectively.
Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Músculos/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Manguito Rotador/diagnóstico por imagem , VibraçãoRESUMO
We developed a Magnetic Resonance elastography (MRE) technique using a conventional magnetic resonance imaging (MRI), which allows a simultaneous elastography of the supraspinatus and trapezius muscles, by designing a new wave transducer (vibration pad) and optimizing the mechanical vibration frequency. Five healthy volunteers underwent an MRE. In order to transmit the mechanical vibration (pneumatic vibration) to the supraspinatus and trapezius muscles, a new vibration pad was designed using a three-dimensional (3D) printer. The vibration pad was placed on the skin 2â¯cm medial and 2â¯cm cephalad the deltoid tubercle. MRE acquisition was performed with a multi-slice gradient-echo type multi-echo MR sequence, which allows MREs even in a conventional MRI; two oblique axial images of the supraspinatus and trapezius muscles were obtained simultaneously. Vibration frequencies were set at 50-150â¯Hz, with a 25â¯Hz step. Wave image quality in each frequency was analyzed using a phase-to-noise ratio (PNR) and clarity of propagating wave that was assessed by two readers qualitatively. In the supraspinatus muscle, the wave images were of good quality especially at frequencies >75â¯Hz. In the trapezius muscle, the wave images were of better quality at low frequencies (50 and 75â¯Hz) compared with high frequencies (100-150â¯Hz). The PNR of both muscles were higher at low frequencies. The mean stiffness in the trapezius muscle (7.26⯱â¯2.13â¯kPa at 75â¯Hz) was larger than those in the supraspinatus muscle (4.16⯱â¯0.50â¯kPa at 75â¯Hz). The results demonstrated that our MRE technique allows simultaneous assessment of the stiffness in the supraspinatus and trapezius muscles using a conventional MRI, and that optimal vibration frequency for simultaneous MRE of these muscles is 75â¯Hz. This technique provides a new means for early detection of abnormality in the shoulder.
Assuntos
Técnicas de Imagem por Elasticidade , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Músculos Superficiais do Dorso/diagnóstico por imagem , Adulto , Voluntários Saudáveis , Humanos , Masculino , Movimento (Física) , Impressão Tridimensional , Manguito Rotador/diagnóstico por imagem , Ombro , Razão Sinal-Ruído , Vibração , Adulto JovemRESUMO
The present study aimed to develop vibration techniques for magnetic resonance (MR) elastography (MRE) of the psoas major muscle (PM). Seven healthy volunteers were included. MRE was performed with motion-encoding gradient (MEG)-less multi-echo MRE sequence, which allows clinicians to perform MRE using conventional MR imaging. In order to transmit mechanical vibration of the pneumatic type to the PM, a long narrow vibration pad was designed using a 3D printer, and the optimum vibration techniques were verified. The vibration pad was placed under the lower back, with the volunteers in the supine position. The results indicated that the PM vibrated well through the transmitted vibration from the lumbar spine, which suggests that the placement of a narrow vibration pad under the supine body, along the lumbar spine, allows the vibration of the PM. The shear modulus of the PM (nâ¯=â¯7) was 1.23⯱â¯0.09â¯kPa (mean⯱â¯SEM) on the right side and 1.22⯱â¯0.15â¯kPa on the left side, with no significant difference (t-test, Pâ¯>â¯0.05). Increased stiffness of the muscle due to continuous local contraction may be an important cause of non-specific low back pain (LBP). The present vibration techniques for MRE of the PM provide a quantitative diagnostic tool for changes in muscle stiffness associated with non-specific LBP.