Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(15): 157402, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269948

RESUMO

We propose a framework that unifies the description of light transmission through three-dimensional amorphous dielectric materials that exhibit both localization and a photonic bandgap. We argue that direct, coherent reflection near and in the bandgap attenuates the generation of diffuse or localized photons. Using the self-consistent theory of localization and considering the density of states of photons, we can quantitatively describe the total transmission of light for all transport regimes: transparency, light diffusion, localization, and bandgap. Comparison with numerical simulations of light transport through hyperuniform networks supports our theoretical approach.

2.
Phys Rev Lett ; 117(5): 053902, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517772

RESUMO

We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

3.
Langmuir ; 32(41): 10641-10650, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27673344

RESUMO

Well-defined submicrometer structures of poly(dimethylaminoethyl methacrylate) (PDMAEMA) were grafted from 100 µm thick films of poly(ethene-alt-tetrafluoroethene) after electron-beam lithographic exposure. To explore the possibilities and limits of the method under different exposure conditions, two different acceleration voltages (2.5 and 100 keV) were employed. First, the influence of electron energy and dose on the extent of grafting and on the structure's morphology was determined via atomic force microscopy. The surface grafting with PDMAEMA was confirmed by advanced surface analytical techniques such as time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Additionally, the possibility of effective postpolymerization modification of grafted structures was demonstrated by quaternization of the grafted PDMAEMA to the polycationic QPDMAEMA form and by exploiting electrostatic interactions to bind charged organic dyes and functional proteins.

4.
Opt Express ; 23(4): 4206-11, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836458

RESUMO

We demonstrate a photonic structure, composed of a dielectric quarter-wavelength stack topped with a transmission phase grating, designed to exhibit a significant asymmetry in the near infrared light transmission for waves propagating in opposite directions. The asymmetry, defined as the difference between the intensity transmission coefficients, reaches 0.72 ± 0.06 for a single wavelength and exceeds 0.2 over a spectral range spanning from 700 to 850 nm for one incident polarization and 750-800 nm for both polarizations. The experimental results are consistent with the numerical model of light propagation in the structure.

5.
Opt Express ; 22(10): 12545-50, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921372

RESUMO

We present a simple broadband gradient-index antireflective coating, fabricated directly on a single mode telecom fiber tip. A regular array of hemi-ellipsoidal protrusions significantly reduce the Fresnel reflection from the glass-air interface. The parameters of the structure were optimized with numerical simulation for the best performance at and around 1550 nm and the coating was fabricated with Direct Laser Writing. The measured reflectance decreased by a factor of 30 at 1550 nm and was below 0.28% for the 100 nm spectral band around the central wavelength. Compared to quarter wavelength antireflective coatings the demonstrated approach offers significantly reduced technological challenges, in particular processing of a single optical material with low sensitivity to imperfections in the fabrication process.

6.
Soft Matter ; 10(28): 5040-4, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24913542

RESUMO

Oil-in-water emulsions composed of colloidal-scale droplets are often stabilized using ionic surfactants that provide a repulsive interaction between neighboring droplet interfaces, thereby inhibiting coalescence. If the droplet volume fraction is raised rapidly by applying an osmotic pressure, the droplets remain disordered, undergo an ergodic-nonergodic transition, and jam. If the applied osmotic pressure approaches the Laplace pressure of the droplets, then the jammed droplets also deform. Because solid friction and entanglements cannot play a role, as they might with solid particulate or microgel dispersions, the shear mechanical response of monodisperse emulsions can provide critical insight into the interplay of entropic, electrostatic, and interfacial forces. Here, we introduce a model that can be used to predict the plateau storage modulus and yield stress of a uniform charge-stabilized emulsion accurately if the droplet radius, interfacial tension, surface potential, Debye screening length, and droplet volume fraction are known.


Assuntos
Elasticidade , Emulsificantes/química , Emulsões/química , Entropia , Modelos Químicos , Óleos/química , Pressão Osmótica , Eletricidade Estática , Propriedades de Superfície , Água/química
7.
Opt Express ; 21(1): 1057-65, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388999

RESUMO

We report on the mesoscale fabrication and characterization of polymeric templates for isotropic photonic materials derived from hyper-uniform point patterns using direct laser writing in a polymer photoresist. We study experimentally the microscopic structure by electron microscopy and small angle light scattering. Reducing the refractive index mismatch by liquid infiltration we find good agreement between the scattering data and numerical calculations in the single scattering limit. Our work thus demonstrates the feasibility of fabricating such random designer materials on technologically relevant length scales.

8.
Materials (Basel) ; 15(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407691

RESUMO

In this paper, we report on a successful synthesis of dysprosium iron garnet Dy3Fe5O12 (DyIG) by a reactive synthesis method involving dysprosium iron perovskite and hematite. Phase formation was traced using dilatometry, and XRD measurements attested to the formation of the desired structure. Samples with relative density close to 97% were fabricated. The samples were characterized using vibrating sample magnetometry, dielectric spectroscopy, and UV-Vis-NIR spectroscopy. Magnetic properties were probed in temperatures between 80 and 700 K with a maximum applied field of 1 kOe. The measurements revealed several effects: the compensation of magnetic moments at a certain temperature, the inversion of the magnetocaloric effect, and the ability to measure the Curie temperature of the material. Activation energy was determined from UV-Vis-NIR and dielectric spectroscopy measurements. Characteristic magnetic temperatures and activation energy values of the samples were similar to bulk DyIG obtained using other methods.

9.
Materials (Basel) ; 14(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34772214

RESUMO

Linear displacement is used for positioning and scanning, e.g., in robotics at different scales or in scientific instrumentation. Most linear motors are either powered by rotary drives or are driven directly by pressure, electromagnetic forces or a shape change in a medium, such as piezoelectrics or shape-memory materials. Here, we present a centimeter-scale light-powered linear inchworm motor, driven by two liquid crystal elastomer (LCE) accordion-like actuators. The rubbing overwriting technique was used to fabricate the LCE actuators, made of elastomer film with patterned alignment. In the linear motor, a scanned green laser beam induces a sequence of travelling deformations in a pair of actuators that move a gripper, which couples to a shaft via friction moving it with an average speed in the order of millimeters per second. The prototype linear motor demonstrates how LCE light-driven actuators with a limited stroke can be used to drive more complex mechanisms, where large displacements can be achieved, defined only by the technical constrains (the shaft length in our case), and not by the limited strain of the material. Inchworm motors driven by LCE actuators may be scaled down to sub-millimeter size and can be used in applications where remote control and power supply with light, either delivered in free space beams or via fibers, is an advantage.

10.
Nat Commun ; 11(1): 4867, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978403

RESUMO

Localization of light is the photon analog of electron localization in disordered lattices, for whose discovery Anderson received the Nobel prize in 1977. The question about its existence in open three-dimensional materials has eluded an experimental and full theoretical verification for decades. Here we study numerically electromagnetic vector wave transmittance through realistic digital representations of hyperuniform dielectric networks, a new class of highly correlated but disordered photonic band gap materials. We identify the evanescent decay of the transmitted power in the gap and diffusive transport far from the gap. Near the gap, we find that transport sets off diffusive but, with increasing slab thickness, crosses over gradually to a faster decay, signaling localization. We show that we can describe the transition to localization at the mobility edge using the self-consistent theory of localization based on the concept of a position-dependent diffusion coefficient.

11.
Materials (Basel) ; 13(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629912

RESUMO

With continuous miniaturization of many technologies, robotics seems to be lagging behind. While the semiconductor technologies operate confidently at the nanometer scale and micro-mechanics of simple structures (MEMS) in micrometers, autonomous devices are struggling to break the centimeter barrier and have hardly colonized smaller scales. One way towards miniaturization of robots involves remotely powered, light-driven soft mechanisms based on photo-responsive materials, such as liquid crystal elastomers (LCEs). While several simple devices have been demonstrated with contracting, bending, twisting, or other, more complex LCE actuators, only their simple behavior in response to light has been studied. Here we characterize the photo-mechanical response of a linear light-driven LCE actuator by measuring its response to laser beams with varying power, pulse duration, pulse energy, and the energy spatial distribution. Light absorption decrease in the actuator over time is also measured. These results are at the foundation of further development of soft, light-driven miniature mechanisms and micro-robots.

12.
Adv Mater ; 32(33): e2002779, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32627876

RESUMO

The ability to grip and handle small objects, from sub-millimeter electronic components to single-micrometer living cells, is vital for numerous ever-shrinking technologies. Mechanical grippers, powered by electric, pneumatic, hydraulic or piezoelectric servos, are well suited for the job at larger scales, but their complexity and need for force transmission prevent their miniaturization and remote control in tight spaces. Using liquid crystal elastomer microstructures that can change shape quickly and reversibly in response to light, a light-powered gripping tool-optical pliers-is built by growing two bending jaws on the tips of optical fibers. By delivering UV light to trigger polymerization via a micrometer-size fiber core, structures of similar size can be made without resorting to any microfabrication technology, such as laser photolithography. The tool is operated using visible light energy supplied through the fibers, with no force transmission. The elastomer growth technique readily offers micrometer-scale, remotely controlled functional structures with different modes of actuation as building blocks for the microtoolbox.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA