Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(37): e2311402, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757547

RESUMO

The native extracellular matrix (ECM) undergoes constant remodeling, where adhesive ligand presentation changes over time and in space to control stem cell function. As such, it is of interest to develop 2D biointerfaces able to study these complex ligand stem-cell interactions. In this study, a novel dynamic bio interface based on DNA hybridization is developed, which can be employed to control ligand display kinetics and used to study dynamic cell-ligand interaction. In this approach, mesoporous silica nanoparticles (MSN) are functionalized with single-strand DNA (MSN-ssDNA) and spin-coated on a glass substrate to create the 2D bio interface. Cell adhesive tripeptide RGD is conjugated to complementary DNA strands (csDNA) of 9, 11, or 20 nucleotides in length, to form csDNA-RGD. The resulting 3 csDNA-RGD conjugates can hybridize with the ssDNA on the MSN surface, presenting RGD with increased ligand dissociation rates as DNA length is shortened. Slow RGD dissociation rates led to enhanced stem cell adhesion and spreading, resulting in elongated cell morphology. Cells on surfaces with slow RGD dissociation rates also exhibited higher motility, migrating in multiple directions compared to cells on surfaces with fast RGD dissociation rates. This study contributes to the existing body of knowledge on dynamic ligand-stem cell interactions.


Assuntos
Adesão Celular , Movimento Celular , DNA , Nanopartículas , Oligopeptídeos , Oligopeptídeos/química , Nanopartículas/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , DNA/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Humanos , Dióxido de Silício/química , DNA de Cadeia Simples/química
2.
Chem Rev ; 121(8): 4561-4677, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33705116

RESUMO

The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.


Assuntos
Materiais Biocompatíveis/química , Ensaios de Triagem em Larga Escala/métodos , Animais , Humanos , Ciência dos Materiais/métodos
3.
Small ; 18(29): e2202112, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754160

RESUMO

In biomaterials R&D, conventional monolayer cell culture on flat/planar material samples, such as films, is still commonly employed at early stages of the assessment of interactions of cells with candidate materials considered for a biomedical application. In this feasibility study, an approach for the assessment of 3D cell-material interactions through dispersed coaggregation of microparticles from biomaterials into tissue spheroids is presented. Biomaterial microparticles can be created comparatively quickly and easily, allow the miniaturization of the assessment platform, and enable an unhindered remodeling of the dynamic cell-biomaterial system at any time. The aggregation of the microsized biomaterials and the cells is supported by low-attachment round-bottom microwells from thin polymer films arranged in densely packed arrays. The study is conducted by the example of MG63 osteoblast-like and human mesenchymal stem/stromal cells, and a small library of model microbiomaterials related to bone repair and regeneration. For the proof of concept, example interactions including cell adhesion to the material, the hybrid spheroids' morphology, size, and shape, material-associated cell death, cell metabolic activity, cell proliferation, and (osteogenic) differentiation are investigated. The cells in the spheroids are shown to respond to differences in the microbiomaterials' properties, their amounts, and the duration of interaction with them.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Osteogênese/fisiologia , Esferoides Celulares , Engenharia Tecidual/métodos
4.
Methods ; 190: 63-71, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247048

RESUMO

This paper describes an innovative yet straightforward fabrication technique to create three-dimensional microstructures with controllable tapered geometries by combining conventional photolithography and thermal reflow of photoresist. Positive photoresist-based microchannel structures with varying width-to-length ratios were reflowed after their fabrication to generate three-dimensional funnel structures with varying curvatures. A polydimethylsiloxane hourglass-shaped microchannel array was next cast on these photoresist structures, and primary human lung microvascular endothelial cells were cultured in the device to engineer an artificial capillary network. Our work demonstrates that this cost-effective and straightforward fabrication technique has great potential in engineering three-dimensional microstructures for biomedical and biotechnological applications such as blood vessel regeneration strategies, drug screening for vascular diseases, microcolumns for bioseparation, and other fluid dynamic studies at microscale.


Assuntos
Células Endoteliais , Dimetilpolisiloxanos , Humanos
5.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499691

RESUMO

The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.


Assuntos
Intestinos , Organoides , Animais , Técnicas de Cocultura , Mucosa Intestinal/patologia , Macrófagos , Mamíferos
6.
Molecules ; 25(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197443

RESUMO

A microfluidic protein aggregation device (microPAD) that allows the user to perform a series of protein incubations with various concentrations of two reagents is demonstrated. The microfluidic device consists of 64 incubation chambers to perform individual incubations of the protein at 64 specific conditions. Parallel processes of metering reagents, stepwise concentration gradient generation, and mixing are achieved simultaneously by pneumatic valves. Fibrillation of bovine insulin was selected to test the device. The effect of insulin and sodium chloride (NaCl) concentration on the formation of fibrillar structures was studied by observing the growth rate of partially folded protein, using the fluorescent marker Thioflavin-T. Moreover, dual gradients of different NaCl and hydrochloric acid (HCl) concentrations were formed, to investigate their interactive roles in the formation of insulin fibrils and spherulites. The chip-system provides a bird's eye view on protein aggregation, including an overview of the factors that affect the process and their interactions. This microfluidic platform is potentially useful for rapid analysis of the fibrillation of proteins associated with many misfolding-based diseases, such as quantitative and qualitative studies on amyloid growth.


Assuntos
Insulina/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Agregados Proteicos , Animais , Benzotiazóis/química , Bovinos
7.
Biomed Microdevices ; 19(4): 81, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28884359

RESUMO

Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.


Assuntos
Citocalasina D/farmacologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Imagem Óptica , Osteossarcoma , Resistência ao Cisalhamento , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Humanos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Osteossarcoma/metabolismo , Osteossarcoma/patologia
8.
J Mater Sci Mater Med ; 27(3): 54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26787486

RESUMO

Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role.


Assuntos
Fosfatos de Cálcio/química , Diferenciação Celular/fisiologia , Ácido Láctico/química , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Polímeros/química , Alicerces Teciduais/química , Células Cultivadas , Humanos , Poliésteres , Fatores de Tempo
9.
Electrophoresis ; 36(3): 475-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25263102

RESUMO

We present here a screening method based on a microfluidic platform, which can generate four orthogonal and overlapping concentration gradients of soluble compounds over a monolayer of cells, in combination with automated and in situ image analysis, for use in regenerative medicine research. The device includes a square chamber in which cells are grown, and four independent supply channels along the sides of the chamber, which are connected through an array of small diffusion channels. Compounds flown through the supply channels diffuse through diffusion channels into the chamber to create a gradient over the cell culture area. Further, the chamber is connected to two channels intended for introduction of cells and in situ staining. In this study, the dimensions of the different channels were optimized through finite element modeling to yield stable gradients, and two designs were used with gradients spanning 2.9-2.4 µM and 3.4-2.0 µM. Next, overlapping gradients were generated using four rhodamine-derived fluorescent dyes, and imaged using confocal microscopy. Finally, the platform was applied to assess the concentration-dependent response of an osteoblastic cell line exposed to a hypoxia-mimicking molecule phenanthroline, using an in situ fluorescent staining assay in combination with image analysis, applicable to closed microfluidic devices. The on-chip assay yielded results comparable to those observed in conventional culture, where a range of concentrations was tested in independent microwells. In the future, we intend to use this method to complement or replace current research approaches in screening soluble compounds for regenerative medicine, which are often based on one-sample-for-one-experiment principle.


Assuntos
Pesquisa Biomédica/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Medicina Regenerativa/instrumentação , Pesquisa Biomédica/métodos , Técnicas de Cultura de Células/métodos , Hipóxia Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Elementos Finitos , Corantes Fluorescentes , Humanos , Processamento de Imagem Assistida por Computador , Técnicas Analíticas Microfluídicas/métodos , Fenantrolinas , Medicina Regenerativa/métodos , Rodaminas
10.
Anal Chem ; 86(15): 7612-7, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24983129

RESUMO

We present a novel high throughput photocatalyst efficiency assessment method based on 96-well microplates and UV-vis spectroscopy. We demonstrate the reproducibility of the method using methyl orange (MO) decomposition and compare kinetic data obtained with those provided in the literature for larger conventional photoreactors. To demonstrate the capabilities of the method, we rapidly screened the effects of salts, potentially present in wastewater, on kinetic rates of MO decomposition and briefly discuss the obtained data on the basis of existing literature.


Assuntos
Ensaios de Triagem em Larga Escala , Processos Fotoquímicos , Purificação da Água/métodos , Catálise , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA