Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(18): e2219885120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094151

RESUMO

Poly(ethylene oxide) (PEO) and poloxamers, a class of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, have many personal and medical care applications, including the stabilization of stressed cellular membranes. Despite the widespread use, the cellular transcriptional response to these molecules is relatively unknown. C2C12 myoblasts, a model muscle cell, were subjected to short-term Poloxamer 188 (P188) and PEO181 (8,000 g/mol) treatment in culture. RNA was extracted and sequenced to quantify transcriptomic impact. The addition of moderate concentrations (14 µM) of either polymer to unstressed cells caused substantial differential gene expression, including at least twofold modulation of 357 and 588 genes, respectively. In addition, evaluation of the transcriptome response to osmotic stress without polymer treatment revealed dramatic change in RNA expression. Interestingly, the addition of polymer to stressed cells-at concentrations that provide physiological protection-did not yield a significant difference in expression of any gene relative to stress alone. Genome-scale expression analysis was corroborated by single-gene quantitative real-time PCR. Changes in protein expression were measured via western blot, which revealed partial alignment with the RNA results. Collectively, the significant changes to expression of multiple genes and resultant protein translation demonstrates an unexpectedly broad biochemical response to these polymers in healthy myoblasts in vitro. Meanwhile, the lack of substantial transcriptional response to polymer treatment in stressed cells highlights the physical nature of that protective mechanism.


Assuntos
Óxido de Etileno , Poloxâmero , Poloxâmero/química , Polietilenoglicóis/química , Polímeros/química , Mioblastos , Propilenoglicóis
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078670

RESUMO

Proteins require high developability-quantified by expression, solubility, and stability-for robust utility as therapeutics, diagnostics, and in other biotechnological applications. Measuring traditional developability metrics is low throughput in nature, often slowing the developmental pipeline. We evaluated the ability of 10 variations of three high-throughput developability assays to predict the bacterial recombinant expression of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, assay performance for 105 variants was calculated via deep sequencing of populations sorted by proxied developability. We identified the most informative assay combination via cross-validation accuracy and correlation feature selection and demonstrated the ability of machine learning models to exploit nonlinear mutual information to increase the assays' predictive utility. We trained a random forest model that predicts expression from assay performance that is 35% closer to the experimental variance and trains 80% more efficiently than a model predicting from sequence information alone. Utilizing the predicted expression, we performed a site-wise analysis and predicted mutations consistent with enhanced developability. The validated assays offer the ability to identify developable proteins at unprecedented scales, reducing the bottleneck of protein commercialization.


Assuntos
Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Proteínas/genética
3.
Mol Pharm ; 20(4): 1884-1897, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897792

RESUMO

Tumor necrosis factor (TNF) is a key regulator of immune responses and plays a significant role in the initiation and maintenance of inflammation. Upregulation of TNF expression leads to several inflammatory diseases, such as Crohn's, ulcerative colitis, and rheumatoid arthritis. Despite the clinical success of anti-TNF treatments, the use of these therapies is limited because they can induce adverse side effects through inhibition of TNF biological activity, including blockade of TNF-induced immunosuppressive function of TNFR2. Using yeast display, we identified a synthetic affibody ligand (ABYTNFR1-1) with high binding affinity and specificity for TNFR1. Functional assays showed that the lead affibody potently inhibits TNF-induced NF-κB activation (IC50 of 0.23 nM) and, crucially, does not block the TNFR2 function. Additionally, ABYTNFR1-1 acts non-competitively─it does not block TNF binding or inhibit receptor-receptor interactions in pre-ligand-assembled dimers─thereby enhancing inhibitory robustness. The mechanism, monovalent potency, and affibody scaffold give this lead molecule uniquely strong potential as a therapeutic candidate for inflammatory diseases.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/química , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Ligantes , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
4.
Langmuir ; 39(40): 14263-14274, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37755825

RESUMO

Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases. This motivated an investigation of poloxamer-lipid bilayer interactions as a function of temperature and thermal history. In this study, we applied pulsed-field-gradient NMR spectroscopy to measure the fraction of chains bound to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) liposomes between 10 and 50 °C. We measured an (11 ± 3)-fold increase in binding affinity at 37 °C relative to 27 °C. Moreover, following incubation at 37 °C, it takes weeks for the system to re-equilibrate at 25 °C. Such slow desorption kinetics suggests that at elevated temperatures polymer chains can pass through the bilayer and access the interior of the liposomes, a mechanism that is inaccessible at lower temperatures. We propose a molecular mechanism to explain this effect, which could have important ramifications on the cellular distribution of ABPs and could be exploited to modulate the mechanical and surface properties of liposomes and cell membranes.


Assuntos
Lipossomos , Poloxâmero , Poloxâmero/química , Polietilenoglicóis/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Água/química
5.
Biomacromolecules ; 24(1): 449-461, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563027

RESUMO

Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions. In this work, we utilized a versatile synthetic platform to create novel bottlebrush analogues to poloxamers and then employed pulsed-field-gradient NMR and an in vitro osmotic stress assay to explore the effect of bottlebrush architectural parameters on binding to, and protection of, model phospholipid bilayers. We found that the binding affinity of a bottlebrush poloxamer (BBP) (B-E1043P515, Mn ≈ 26 kDa) is about 3 times higher than a linear poloxamer with a similar composition and number of PPO units (L-E93P54E93, Mn ≈ 11 kDa). Furthermore, BBP binding is sensitive to overall molecular weight, side-chain length, and architecture (statistical versus block). Finally, all tested BBPs exhibit a protective effect on cell membranes under stress at sub-µM concentrations. As the factors controlling membrane affinity and protection efficacy of bottlebrush poloxamers are not understood, these results provide important insight into how they adhere to and stabilize a lipid bilayer surface.


Assuntos
Bicamadas Lipídicas , Poloxâmero , Poloxâmero/química , Bicamadas Lipídicas/química , Lipossomos , Polímeros/química , Polietilenoglicóis/química
6.
Biochemistry ; 59(40): 3856-3868, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32941010

RESUMO

Fatty acid-induced upregulation of death receptor 5 (DR5) and its cognate ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), promotes hepatocyte lipoapoptosis, which is a key mechanism in the progression of fatty liver disease. Accordingly, inhibition of DR5 signaling represents an attractive strategy for treating fatty liver disease. Ligand competition strategies are prevalent in tumor necrosis factor receptor antagonism, but recent studies have suggested that noncompetitive inhibition through perturbation of the receptor conformation may be a compelling alternative. To this end, we used yeast display and a designed combinatorial library to identify a synthetic 58-amino acid affibody ligand that specifically binds DR5. Biophysical and biochemical studies show that the affibody neither blocks TRAIL binding nor prevents the receptor-receptor interaction. Live-cell fluorescence lifetime measurements indicate that the affibody induces a conformational change in transmembrane dimers of DR5 and favors an inactive state of the receptor. The affibody inhibits apoptosis in TRAIL-treated Huh-7 cells, an in vitro model of fatty liver disease. Thus, this lead affibody serves as a potential drug candidate, with a unique mechanism of action, for fatty liver disease.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Linhagem Celular Tumoral , Descoberta de Drogas , Células HEK293 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Ligantes , Multimerização Proteica/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
7.
Bioinformatics ; 35(16): 2707-2712, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590444

RESUMO

MOTIVATION: Deep mutational scanning experiments have enabled the measurement of the sequence-function relationship for thousands of mutations in a single experiment. The Protein Analysis and Classifier Toolkit (PACT) is a Python software package that marries the fitness metric of a given mutation within these experiments to sequence and structural features enabling downstream analyses. PACT enables the easy development of user sharable protocols for custom deep mutational scanning experiments as all code is modular and reusable between protocols. Protocols for mutational libraries with single or multiple mutations are included. To exemplify its utility, PACT assessed two deep mutational scanning datasets that measured the tradeoff of enzyme activity and enzyme stability. RESULTS: PACT efficiently evaluated classifiers that predict protein mutant function tested on deep mutational scanning screens. We found that the classifiers with the lowest false positive and highest true positive rate assesses sequence homology, contact number and if mutation involves proline. AVAILABILITY AND IMPLEMENTATION: PACT and the processed datasets are distributed freely under the terms of the GPL-3 license. The source code is available at GitHub (https://github.com/JKlesmith/PACT). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas/análise , Software , Mutação
8.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32917749

RESUMO

Class IIa bacteriocin antimicrobial peptides (AMPs) are a compelling alternative to current antimicrobials because of potential specific activity toward antibiotic-resistant bacteria, including vancomycin-resistant enterococci. Engineering of these molecules would be enhanced by a better understanding of AMP sequence-activity relationships to improve efficacy in vivo and limit effects of off-target activity. Toward this goal, we experimentally evaluated 210 natural and variant class IIa bacteriocins for antimicrobial activity against six strains of enterococci. Inhibitory activity was ridge regressed to AMP sequence to predict performance, achieving an area under the curve of 0.70 and demonstrating the potential of statistical models for identifying and designing AMPs. Active AMPs were individually produced and evaluated against eight enterococcus strains and four Listeria strains to elucidate trends in susceptibility. It was determined that the mannose phosphotransferase system (manPTS) sequence is informative of susceptibility to class IIa bacteriocins, yet other factors, such as membrane composition, also contribute strongly to susceptibility. A broadly potent bacteriocin variant (lactocin DT1) from a Lactobacillus ruminis genome was identified as the only variant with inhibitory activity toward all tested strains, while a novel enterocin variant (DT2) from an Enterococcus faecium genome demonstrated specificity toward Listeria strains. Eight AMPs were evaluated for proteolytic stability to trypsin, chymotrypsin, and pepsin, and three C-terminal disulfide-containing variants, including divercin V41, were identified as compelling for future in vivo studies, given their high potency and proteolytic stability.IMPORTANCE Class IIa bacteriocin antimicrobial peptides (AMPs), an alternative to traditional small-molecule antibiotics, are capable of selective activity toward various Gram-positive bacteria, limiting negative side effects associated with broad-spectrum activity. This selective activity is achieved through targeting of the mannose phosphotransferase system (manPTS) of a subset of Gram-positive bacteria, although factors affecting this mechanism are not entirely understood. Peptides identified from genomic data, as well as variants of previously characterized AMPs, can offer insight into how peptide sequence affects activity and selectivity. The experimental methods presented here identify promising potent and selective bacteriocins for further evaluation, highlight the potential of simple computational modeling for prediction of AMP performance, and demonstrate that factors beyond manPTS sequence affect bacterial susceptibility to class IIa bacteriocins.


Assuntos
Bacteriocinas/metabolismo , Enterococcus/efeitos dos fármacos , Listeria/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Enterococcus/metabolismo , Biblioteca Gênica , Genes Bacterianos , Listeria/metabolismo
9.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811034

RESUMO

Bacteriophage-derived lysin proteins are potentially effective antimicrobials that would benefit from engineered improvements to their bioavailability and specific activity. Here, the catalytic domain of LysEFm5, a lysin with activity against vancomycin-resistant Enterococcus faecium (VRE), was subjected to site-saturation mutagenesis at positions whose selection was guided by sequence and structural information from homologous proteins. A second-order Potts model with parameters inferred from large sets of homologous sequence information was used to predict the average change in the statistical fitness for mutant libraries with diversity at pairs of sites within the secondary catalytic shell. Guided by the statistical fitness, nine double mutant saturation libraries were created and plated on agar containing autoclaved VRE to quickly identify and segregate catalytically active (halo-forming) and inactive (non-halo-forming) variants. High-throughput DNA sequencing of 873 unique variants showed that the statistical fitness was predictive of the retention or loss of catalytic activity (area under the curve [AUC], 0.840 to 0.894), with the inclusion of more diverse sequences in the starting multiple-sequence alignment improving the classification accuracy when pairwise amino acid couplings (epistasis) were considered. Of eight random halo-forming variants selected for more sensitive testing, one showed a 1.8 (±0.4)-fold improvement in specific activity and an 11.5 ± 0.8°C increase in melting temperature compared to those of the wild type. Our results demonstrate that a computationally informed approach employing homologous protein information coupled with a mid-throughput screening assay allows for the expedited discovery of lysin variants with improved properties.IMPORTANCE Broad-spectrum antibiotics can indiscriminately kill most bacteria, including commensal species that are a part of the normal human flora. This can potentially lead to the proliferation of drug-resistant bacteria upon elimination of competing species and to unwanted autoimmune effects in patients. Bacteriophage-derived lysin proteins are an alternative to conventional antibiotics that have coevolved alongside specific bacterial hosts. Lysins are capable of targeting conserved substrates in the bacterial cell wall essential for its viability. To engineer these proteins to exhibit improved therapeutically relevant properties, homology-guided statistical approaches can be used to identify compelling sites for mutation and to quantify the functional constraints acting on these sites to direct mutagenic library creation. The platform described herein couples this informed approach with a visual plate assay that can be used to simultaneously screen hundreds of mutants for catalytic activity, allowing for the streamlined identification of improved lysin variants.


Assuntos
Antibacterianos/farmacologia , Domínio Catalítico/genética , Enterococcus faecium/efeitos dos fármacos , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Vancomicina/farmacologia , Proteínas Virais/genética , Sequência de Aminoácidos , Catálise , Biologia Computacional , Proteínas Virais/química , Proteínas Virais/metabolismo
10.
Langmuir ; 36(13): 3393-3403, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216370

RESUMO

Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.


Assuntos
Bicamadas Lipídicas , Propilenoglicóis , Polietilenoglicóis , Polímeros
11.
Biochemistry ; 58(48): 4869-4881, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702909

RESUMO

The B-cell surface protein CD19 is present throughout the cell life cycle and is uniformly expressed in leukemias, making it a target for chimeric antigen receptor engineered immune cell therapy. Identifying the sequence dependence of the binding of CD19 to antibodies empowers fundamental study and more tailored development of CD19-targeted therapeutics. To identify the antibody-binding epitopes on CD19, we screened a comprehensive single-site saturation mutation library of the human CD19 extracellular domain to identify mutations detrimental to binding FMC63-the dominant CD19 antibody used in chimeric antigen receptor development-as well as 4G7-2E3 and 3B10, which have been used in various types of CD19 research and development. All three antibodies had partially overlapping, yet distinct, epitopes near the published epitope of antibody B43. The FMC63 conformational epitope spans spatially adjacent, but genetically distant, loops in exons 3 and 4. The 3B10 epitope is a linear peptide sequence that binds CD19 with 440 pM affinity. Along with their primary goal of epitope mapping, the mutational tolerance data also empowered additional CD19 variant design and analysis. A designed CD19 variant with all N-linked glycosylation sites removed successfully bound antibody in the yeast display context, which provides a lead for aglycosylated applications. Screening for thermally stable variants identified mutations to guide further CD19 stabilization for fusion protein applications and revealed evolutionary affinity-stability trade-offs. These fundamental insights into CD19 sequence-function relationships enhance our understanding of antibody-mediated CD19-targeted therapeutics.


Assuntos
Antígenos CD19/química , Antígenos CD19/imunologia , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/imunologia , Antígenos CD19/genética , Mapeamento de Epitopos , Éxons , Humanos , Mutação , Domínios Proteicos
12.
J Am Chem Soc ; 141(1): 251-261, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30507196

RESUMO

Nature uses multivalency to govern many biological processes. The development of macromolecular and cellular therapies has largely been dependent on engineering similar polyvalent interactions to enable effective targeting. Such therapeutics typically utilize high-affinity binding domains that have the propensity to recognize both antigen-overexpressing tumors and normal-expressing tissues, leading to "on-target, off-tumor" toxicities. One strategy to improve these agents' selectivity is to reduce the binding affinity, such that biologically relevant interactions between the therapeutic and target cell will only exist under conditions of high avidity. Preclinical studies have validated this principle of avidity optimization in the context of chimeric antigen receptor (CAR) T cells; however, a rigorous analysis of this approach in the context of soluble multivalent targeting scaffolds has yet to be undertaken. Using a modular protein nanoring capable of displaying ≤8 fibronectin domains with engineered specificity for a model antigen, epithelial cell adhesion molecule (EpCAM), this study demonstrates that binding affinity and ligand valency can be optimized to afford discrimination between EpCAMHigh (2.8-3.8 × 106 antigens/cell) and EpCAMLow (5.2 × 104 to 2.2 × 105 antigens/cell) tissues both in vitro and in vivo.


Assuntos
Molécula de Adesão da Célula Epitelial/metabolismo , Regulação da Expressão Gênica , Animais , Humanos , Ligantes , Células MCF-7 , Masculino , Camundongos , Ligação Proteica , Especificidade por Substrato , Distribuição Tecidual
13.
Appl Environ Microbiol ; 85(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30850429

RESUMO

Bacteriophage lysins are compelling antimicrobial proteins whose biotechnological utility and evolvability would be aided by elevated stability. Lysin catalytic domains, which evolved as modular entities distinct from cell wall binding domains, can be classified into one of several families with highly conserved structure and function, many of which contain thousands of annotated homologous sequences. Motivated by the quality of these evolutionary data, the performance of generative protein models incorporating coevolutionary information was analyzed to predict the stability of variants in a collection of 9,749 multimutants across 10 libraries diversified at different regions of a putative lysin from a prophage region of a Clostridium perfringens genome. Protein stability was assessed via a yeast surface display assay with accompanying high-throughput sequencing. Statistical fitness of mutant sequences, derived from second-order Potts models inferred with different levels of sequence homolog information, was predictive of experimental stability with areas under the curve (AUCs) ranging from 0.78 to 0.85. To extract an experimentally derived model of stability, a logistic model with site-wise score contributions was regressed on the collection of multimutants. This achieved a cross-validated classification performance of 0.95. Using this experimentally derived model, 5 designs incorporating 5 or 6 mutations from multiple libraries were constructed. All designs retained enzymatic activity, with 4 of 5 increasing the melting temperature and with the highest-performing design achieving an improvement of +4°C.IMPORTANCE Bacteriophage lysins exhibit high specificity and activity toward host bacteria with which the phage coevolved. These properties of lysins make them attractive for use as antimicrobials. Although there has been significant effort to develop platforms for rapid lysin engineering, there have been numerous shortcomings when pursuing the ultrahigh throughput necessary for the discovery of rare combinations of mutations to improve performance. In addition to validation of a putative lysin and stabilization thereof, the experimental and computational methods presented here offer a new avenue for improving protein stability and are easily scalable to analysis of tens of millions of mutations in single experiments.


Assuntos
Clostridium perfringens/virologia , Endopeptidases/metabolismo , Saccharomyces cerevisiae/química , Proteínas Virais/metabolismo , Domínio Catalítico , Modelos Biológicos , Prófagos
14.
Bioconjug Chem ; 30(6): 1677-1689, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31082216

RESUMO

Spectroscopic photoacoustic (sPA) molecular imaging has high potential for identification of exogenous contrast agents targeted to specific markers. Antibody-dye conjugates have recently been used extensively for preclinical sPA and other optical imaging modalities for highly specific molecular imaging of breast cancer. However, antibody-based agents suffer from long circulation times that limit image specificity. Here, the efficacy of a small protein scaffold, the affibody (ABY), conjugated to indocyanine green (ICG), a near-infrared fluorescence dye, as a targeted molecular imaging probe is demonstrated. In particular, B7-H3 (CD276), a cellular receptor expressed in breast cancer, was imaged via sPA and fluorescence molecular imaging to differentiate invasive tumors from normal glands in mice. Administration of ICG conjugated to an ABY specific to B7-H3 (ABYB7-H3-ICG) showed significantly higher signal in mammary tumors compared to normal glands of mice. ABYB7-H3-ICG is a compelling scaffold for molecular sPA imaging for breast cancer detection.


Assuntos
Antígenos B7/análise , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste/química , Corantes Fluorescentes/química , Imunoconjugados/química , Verde de Indocianina/química , Animais , Feminino , Camundongos , Imagem Óptica/métodos , Técnicas Fotoacústicas/métodos
15.
Biotechnol Bioeng ; 116(10): 2439-2450, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209863

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) kill bacteria via a nonlytic mechanism in which they permeate through the outer membrane, utilize protein-mediated transport across the inner membrane, and target the ribosome to inhibit protein synthesis. We previously reported that substitutions of oncocin ( VDKPPYLPRPRPPRRIYNR-NH2 ) with a pair of cationic residues improved the antimicrobial activity. In this study, we applied the design protocol to three other PrAMPs: apidaecin-1b, pyrrhocoricin, and bactenecin 7(1-16) and found that the substitutions (R4K and I8K/R) for apidaecin-1b improve the activity by twofold (p < .05) against nonpathogenic Escherichia coli. Moreover, the substitutions (L7K/R and R14K) for pyrrhocoricin improve the activity by 2-10-fold (p < .05) against some strains of E. coli and Salmonella Typhimurium. We also performed activity tests against inner membrane protein (SbmA or YgdD) knockout strains. The result is consistent with previous studies that SbmA is the major transporter for apidaecin-1b and pyrrhocoricin derivatives. However, bactenecin 7(1-16) functions independently of these transporters. In addition, several apidaecin-1b derivatives exhibit enhanced activity relative to wild-type only in the absence of SbmA, which is consistent with mutations that enhance transport across the inner membrane. A high performance liquid chromatography-based kinetic assay for cellular association and internalization demonstrates that the selected cationic mutations can improve cellular association in minimal media, but this enhanced association is not required for increased activity, which suggests the importance of inner membrane transport. These functional studies on cationic mutants of PrAMPs advance understanding of potency and mechanism and advance the ability to engineer improved antimicrobials as evidenced by the identification of the pyrrhocoricin mutant (L7R and R14K) with 10-fold elevated potency against pathogenic E. coli.


Assuntos
Substituição de Aminoácidos , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Escherichia coli/crescimento & desenvolvimento , Mutação de Sentido Incorreto , Salmonella typhimurium/crescimento & desenvolvimento , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia
16.
Biotechnol Bioeng ; 116(3): 526-535, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536855

RESUMO

The Gp2 domain is a 45 amino-acid scaffold that has been evolved for specific, high-affinity binding towards multiple targets and was proven useful in molecular imaging and biological antagonism. It was hypothesized that Gp2 may benefit from increased hydrophilicity for improved physiological distribution as well as for physicochemical robustness. We identified seven exposed hydrophobic sites for hydrophilic mutations and experimentally evaluated single mutants, which yielded six mutations that do not substantially hinder expression, binding affinity or specificity (to epidermal growth factor receptor), and thermal stability. Eight combinations of these mutations improved hydrophilicity relative to the parental Gp2 clone as assessed by reverse-phase high-performance liquid chromatography (p < 0.05). Secondary structures and refolding abilities of the selected single mutants and all multimutants were unchanged relative to the parental ligand. A variant with five hydrophobic-to-hydrophilic mutations was identified with enhanced solubility as well as reasonable binding affinity ( K d = 53-63 nM), recombinant yield (1.3 ± 0.8 mg/L), and thermal stability ( T m = 53 ± 3°C). An alternative variant with a cluster of three leucine-to-hydrophilic mutations was identified with increased solubility, nominally increased binding affinity ( K d = 13-28 nM) and reasonable thermal stability ( T m = 54.0 ± 0.6°C) but reduced yield (0.4 ± 0.3 mg/L). In addition, a ≥7°C increase in the midpoint of thermal denaturation was observed in one of the single mutants (T21N). These mutants highlight the physicochemical tradeoffs associated with hydrophobic-to-hydrophilic mutation within a small protein, improve the solubility and hydrophilicity of an existent molecular imaging probe, and provide a more hydrophilic starting point for discovery of new Gp2 ligands towards additional targets.


Assuntos
Mutagênese Sítio-Dirigida/métodos , Domínios Proteicos/genética , Proteínas Recombinantes , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/metabolismo , Escherichia coli , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
17.
Mol Pharm ; 16(8): 3544-3558, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31242389

RESUMO

CD19-targeted chimeric antigen receptor (CAR) T-cells (CAR19s) show remarkable efficacy in the treatment of relapsed/refractory acute lymphocytic leukemia and Non-Hodgkin's lymphoma. However, the use of CAR T-cell therapy against CD19-negative hematological cancers and solid tumors has been challenging. We propose CD19-fusion proteins (CD19-FPs) to leverage the benefits of CAR19s while retargeting this validated cellular therapy to alternative tumor antigens. We demonstrate the ability of a fusion of CD19 extracellular domain (ECD) and a human epidermal growth factor receptor 2 (HER2) single-chain antibody fragment to retarget CAR19s to kill HER2+ CD19- tumor cells. To enhance the modularity of this technology, we engineered a more robust CD19 ECD via deep mutational scanning with yeast display and flow cytometric selections for improved protease resistance and anti-CD19 antibody binding. These enhanced CD19 ECDs significantly increase, and in some cases recover, fusion protein expression while maintaining target antigen affinity. Importantly, CD19-FPs retarget CAR19s to kill tumor cells expressing multiple distinct antigens, including HER2, CD20, EGFR, BCMA, and Clec12A as N- or C-terminal fusions and linked to both antibody fragments and fibronectin ligands. This study provides fundamental insights into CD19 sequence-function relationships and defines a flexible and modular platform to retarget CAR19s to any tumor antigen.


Assuntos
Antígenos CD19/metabolismo , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/metabolismo , Linfócitos T/imunologia , Antígenos CD19/genética , Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mutagênese , Neoplasias/imunologia , Neoplasias/patologia , Domínios Proteicos/genética , Engenharia de Proteínas , Receptor ErbB-2/antagonistas & inibidores , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
18.
Langmuir ; 35(22): 7231-7241, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31117745

RESUMO

Interactions of nonionic poly(ethylene oxide)- b-poly(propylene oxide) (PEO-PPO) block copolymers, known as Pluronics or poloxamers, with cell membranes have been widely studied for a host of biomedical applications. Herein, we report how cholesterol within phosphatidylcholine (POPC) lipid bilayer liposomes and bilayer curvature affects the binding of several PPO-PEO-PPO triblocks with varying PPO content and a tPPO-PEO diblock, where t refers to a tert-butyl end group. Pulsed-field-gradient NMR was employed to quantify the extent of copolymer associated with liposomes prepared with cholesterol concentrations ranging from 0 to 30 mol % relative to the total content of POPC and cholesterol and vesicle extrusion radii of 25, 50, or 100 nm. The fraction of polymer bound to the liposomes was extracted from NMR data on the basis of the very different mobilities of the bound and free polymers in aqueous solution. Cholesterol concentration was manipulated by varying the molar percentage of this sterol in the POPC bilayer preparation. The membrane curvature was varied by adjusting the liposome size through a conventional pore extrusion technique. Although the PPO content significantly influences the overall amount of block copolymer adsorbed to the liposome, we found that polymer binding decreases with increasing cholesterol concentration in a universal fashion, with the fraction of bound polymer dropping 10-fold between 0 and 30 mol % cholesterol relative to the total content of POPC and cholesterol. Increasing the bilayer curvature (decreasing the radius of the liposome) in the absence of cholesterol increases polymer binding between 2- and 4-fold over the range of liposome sizes studied. These results demonstrate that cholesterol plays a dominant role, and bilayer curvature has a less significant impact as the curvature decreases, on polymer-membrane association.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Polímeros/química , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/química , Propilenoglicóis/química
19.
Bioconjug Chem ; 29(5): 1646-1658, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29579383

RESUMO

The Gp2 domain is a protein scaffold for synthetic ligand engineering. However, the native protein function results in a heterogeneous distribution of charge on the conserved surface, which may hinder further development and utility. We aim to modulate charge, without diminishing function, which is challenging in small proteins where each mutation is a significant fraction of protein structure. We constructed rationally guided combinatorial libraries with charge-neutralizing or charge-flipping mutations and sorted them, via yeast display and flow cytometry, for stability and target binding. Deep sequencing of functional variants revealed effective mutations both in clone-dependent contexts and broadly across binders to epidermal growth factor receptor (EGFR), insulin receptor, and immunoglobulin G. Functional mutants averaged 4.3 charge neutralizing mutations per domain while maintaining net negative charge. We evolved an EGFR-targeted Gp2 mutant that reduced charge density by 33%, maintained net charge, and improved charge distribution homogeneity while elevating thermal stability ( Tm = 87 ± 1 °C), improving binding specificity, and maintaining affinity ( Kd = 8.8 ± 0.6 nM). This molecule was conjugated with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid for 64Cu chelation and evaluated for physiological distribution in mice with xenografted A431 (EGFRhigh) and MDA-MB-435 (EGFRlow) tumors. Excised tissue gamma counting and positron emission tomography/computed tomography imaging revealed good EGFRhigh tumor signal (4.7 ± 0.5%ID/g) at 2 h post-injection and molecular specificity evidenced by low uptake in EGFRlow tumors (0.6 ± 0.1%ID/g, significantly lower than for non-charge-modified Gp2, p = 0.01). These results provide charge mutations for an improved Gp2 framework, validate an effective approach to charge engineering, and advance performance of physiological EGFR targeting for molecular imaging.


Assuntos
Acetatos/química , Radioisótopos de Cobre/química , Receptores ErbB/análise , Compostos Heterocíclicos com 1 Anel/química , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas Repressoras/química , Acetatos/farmacocinética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacocinética , Feminino , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Camundongos , Modelos Moleculares , Mutação , Engenharia de Proteínas/métodos , Proteínas Repressoras/genética , Proteínas Repressoras/farmacocinética , Eletricidade Estática , Distribuição Tecidual
20.
Bioconjug Chem ; 29(4): 1291-1301, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29537253

RESUMO

Membrane-engineered cells displaying antigen-targeting ligands are useful as both scientific tools and clinical therapeutics. While genetically encoded artificial receptors have proven efficacious, their scope remains limited, as this approach is not amenable to all cell types and the modification is often permanent. Our group has developed a nongenetic method to rapidly, stably, and reversibly modify any cell membrane with a chemically self-assembled nanoring (CSAN) that can function as a prosthetic receptor. Bifunctional CSANs displaying epithelial cell adhesion molecule (EpCAM)-targeted fibronectin domains were installed on the cell membrane through hydrophobic insertion and remained stably bound for ≥72 h in vitro. These CSAN-labeled cells were capable of recognizing EpCAM-expressing target cells, forming intercellular interactions that were subsequently reversed by disassembling the nanoring with the FDA-approved antibiotic, trimethoprim. This study demonstrates the use of this system to engineer cell surfaces with prosthetic receptors capable of directing specific and reversible cell-cell interactions.


Assuntos
Comunicação Celular , Molécula de Adesão da Célula Epitelial/metabolismo , Fibronectinas/metabolismo , Proteínas Imobilizadas/metabolismo , Nanoestruturas/química , Fosfolipídeos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Molécula de Adesão da Célula Epitelial/química , Fibronectinas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Imobilizadas/química , Células MCF-7 , Fosfolipídeos/química , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA