Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Addict Biol ; 25(3): e12749, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30950164

RESUMO

Shati/Nat8l is a novel N-acetyltransferase identified in the brain of mice treated with methamphetamine (METH). Shati/Nat8l mRNA is expressed in various brain areas, including the prefrontal cortex (PFC), where the expression level is higher than that in other brain regions. Shati/Nat8l overexpression in the nucleus accumbens (NAc) attenuates the pharmacological response to METH via mGluR3. Meanwhile, dopamine (DA) and glutamate dysregulations have been reported in the medial prefrontal cortex (mPFC) and NAc after METH self-administration and during reinstatement. However, the mechanism, the reward system, and function of Shati/Nat8l in the mPFC is unclear. Here, we injected an adeno-associated virus (AAV) vector containing Shati/Nat8l into the mPFC of mice, to overexpress Shati/Nat8l in the mPFC (mPFC-Shati/Nat8l). Interestingly, the METH-induced conditioned place preference (CPP) was attenuated in the mPFC-Shati/Nat8l mice, but locomotor activity was not. Additionally, immunohistochemical results from mice that were injected with AAV-GFP showed fluorescence in the mPFC and other brain regions, mainly the NAc, indicating an mPFC-NAc top-down connection. Finally, in vivo microdialysis experiments revealed that Shati/Nat8l overexpression in the mPFC reduced extracellular DA levels and suppressed the METH-induced DA increase in the NAc. Moreover, decreased extracellular glutamate levels were observed in the NAc. These results indicate that Shati/Nat8l overexpression in the mPFC attenuates METH-induced CPP by decreasing extracellular DA in the NAc. In contrast, Shati/Nat8l-mPFC overexpression did not alter METH-induced hyperlocomotion. This study demonstrates that Shati/Nat8l in the mPFC attenuates METH reward-seeking behaviour but not the psychomotor activity of METH.


Assuntos
Acetiltransferases/genética , Condicionamento Clássico , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Locomoção/genética , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Técnicas de Introdução de Genes , Locomoção/efeitos dos fármacos , Masculino , Metanfetamina/farmacologia , Camundongos , Microdiálise
2.
Behav Brain Res ; 397: 112938, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32998043

RESUMO

A novel N-acetyltransferase, Shati/Nat8l, was identified in the brains of mice exposed to methamphetamine. Shati/Nat8l overexpression in the medial prefrontal cortex (mPFC) was found to attenuate methamphetamine-induced dependence. The mPFC is a brain region that plays an important role in cognitive function. However, the effect of Shati/Nat8l on cognition and memory has not yet been clarified. To understand the role of Shati/Nat8l in memory, we generated C57BL/6J mice with overexpressed Shati/Nat8l in the mPFC and performed memory-related experiments, including novel object-location and object-in-context tests. Furthermore, we used quantitative immunohistochemistry to assess the presynaptic and postsynaptic proteins, synaptophysin and postsynaptic density protein (PSD)-95, respectively. Shati/Nat8l overexpression in the mPFC impaired both novel object-location and object-in-context memory. Moreover, Shati/Nat8l overexpression in the mPFC reduced PSD-95 levels, but not synaptophysin levels in the mPFC. These results demonstrated that Shati/Nat8l overexpression in the mPFC is involved in location and contextual memory, and can affect the excitatory postsynaptic protein, PSD-95.


Assuntos
Acetiltransferases/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Memória/fisiologia , Córtex Pré-Frontal/metabolismo , Sinaptofisina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Memória Espacial/fisiologia
3.
Neuropsychopharmacol Rep ; 39(3): 209-216, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31283871

RESUMO

AIM: We previously reported that methamphetamine (METH)-induced conditioned place preference was attenuated by Shati/Nat8l overexpression in the medial prefrontal cortex (mPFC). Shati/Nat8l overexpression in the mPFC expressed lower levels of both glutamate and dopamine (DA) in the nucleus accumbens (NAc) and attenuated METH-induced DA elevation. We suggested a mechanism in which a decline of glutamate levels in the NAc decreases extracellular DA levels. However, the hypothesis has not confirmed. METHODS: We conducted a recovery experiments by pre-microinjection of an mGluR group II antagonist, LY341495, into the NAc shell of mPFC-Shati/Nat8l-overexpressed mice followed by METH injection and DA levels measurement by in vivo microdialysis. RESULTS: Pretreatment with LY341495 was able to restore METH-induced DA increase. Furthermore, mice injected with an adeno-associated virus vector containing GFP (AAV-GFP vector) in the mPFC expressed a colocalization of GFP with DARPP-32 a medium spiny neuron (MSN) marker. Next, co-immunostaining of DARPP-32 and neuronal nitric oxide synthase (nNOS: expressed in a subtype of gamma-Aminobutyric acid (GABA interneurons) in ventral tegmental area (VTA) showed a colocalization of nNOS and DARPP-32. CONCLUSION: These results provided a proof that Shati/Nat8l attenuation of METH-induced DA increase is mediated by mGluR group II in the NAc. Moreover, immunohistochemical study showed a direct connection of mPFC projection neurons with NAc MSN and a connection of MSN projection neurons with a subtype of GABA interneurons in VTA.


Assuntos
Dopaminérgicos/farmacologia , Dopamina/metabolismo , Metanfetamina/farmacologia , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Acetiltransferases/metabolismo , Aminoácidos/farmacologia , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Xantenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA