Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO J ; 41(17): e108780, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35815410

RESUMO

Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.


Assuntos
Crista Neural , Células de Schwann , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Nervos Periféricos , Células de Schwann/metabolismo
2.
Development ; 146(20)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31575648

RESUMO

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Neurosci ; 33(45): 17656-66, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198358

RESUMO

The principle by which unmyelinated primary sensory neurons transducing thermal, itch and pain perception are specified in early development is unknown. These classes of sensory neurons diversify from a common population of late-born neurons, which initiate expression of Runt homology domain transcription factor RUNX1 and the nerve growth factor receptor TrkA. Here, we report that signals emanating from within the mouse dorsal root ganglion mediated partly by early-born neurons destined to a myelinated phenotype participate in fating late-born RUNX1(+)/TrkA(+) neurons. Inductive factors include FGFs via activation of FGF receptor 1 (FGFR1). Consistently, FGF2 is sufficient to induce expression of RUNX1, and Fgfr1 conditional mutant mice display deficits in fating of the common population of late-born RUNX1(+)/TrkA(+) neurons that develop into unmyelinated neurons. Thus, the distinct lineages of sensory neurons are acquired in response to increasing FGF levels provided by a rising number of born neurons.


Assuntos
Linhagem da Célula/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Embrião de Galinha , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fibras Nervosas Amielínicas/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Células Receptoras Sensoriais/metabolismo
4.
Curr Opin Cell Biol ; 79: 102133, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347131

RESUMO

Neuron types are the building blocks of the nervous system, and therefore, of functional circuits. Understanding the origin of neuronal diversity has always been an essential question in neuroscience and developmental biology. While knowledge on the molecular control of their diversification has largely increased during the last decades, it is now possible to reveal the dynamic mechanisms and the actual stepwise molecular changes occurring at single-cell level with the advent of single-cell omics technologies and analysis with high temporal resolution. Here, we focus on recent advances in the field and in technical and analytical tools that enable detailed insights into the emergence of neuron types in the central and peripheral nervous systems.


Assuntos
Neurônios , Sistema Nervoso Periférico
5.
Nat Commun ; 13(1): 3878, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790771

RESUMO

Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.


Assuntos
Neurônios , Gânglio Espiral da Cóclea , Animais , Diferenciação Celular/genética , Células Ciliadas Auditivas/metabolismo , Camundongos , Neurônios/metabolismo , RNA/metabolismo
6.
Nat Commun ; 12(1): 6830, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819507

RESUMO

Branching morphogenesis governs the formation of many organs such as lung, kidney, and the neurovascular system. Many studies have explored system-specific molecular and cellular regulatory mechanisms, as well as self-organizing rules underlying branching morphogenesis. However, in addition to local cues, branched tissue growth can also be influenced by global guidance. Here, we develop a theoretical framework for a stochastic self-organized branching process in the presence of external cues. Combining analytical theory with numerical simulations, we predict differential signatures of global vs. local regulatory mechanisms on the branching pattern, such as angle distributions, domain size, and space-filling efficiency. We find that branch alignment follows a generic scaling law determined by the strength of global guidance, while local interactions influence the tissue density but not its overall territory. Finally, using zebrafish innervation as a model system, we test these key features of the model experimentally. Our work thus provides quantitative predictions to disentangle the role of different types of cues in shaping branched structures across scales.


Assuntos
Modelos Biológicos , Morfogênese , Animais , Animais Geneticamente Modificados , Genes Reporter/genética , Microscopia Intravital , Modelos Animais , Células Receptoras Sensoriais/fisiologia , Processos Estocásticos , Peixe-Zebra/embriologia
7.
Nat Commun ; 12(1): 1026, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589589

RESUMO

Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.


Assuntos
Retroalimentação Sensorial/fisiologia , Gânglios Espinais/metabolismo , Neurônios Motores/metabolismo , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Calbindina 1/genética , Calbindina 1/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/citologia , Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/classificação , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/citologia , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/metabolismo
8.
Nat Commun ; 11(1): 4175, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826903

RESUMO

Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.


Assuntos
Neurogênese/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Células-Tronco
9.
Front Mol Neurosci ; 12: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740044

RESUMO

In humans, neurosecretory chromaffin cells control a number of important bodily functions, including those related to stress response. Chromaffin cells appear as a distinct cell type at the beginning of midgestation and are the main cellular source of adrenalin and noradrenalin released into the blood stream. In mammals, two different chromaffin organs emerge at a close distance to each other, the adrenal gland and Zuckerkandl organ (ZO). These two structures are found in close proximity to the kidneys and dorsal aorta, in a region where paraganglioma, pheochromocytoma and neuroblastoma originate in the majority of clinical cases. Recent studies showed that the chromaffin cells comprising the adrenal medulla are largely derived from nerve-associated multipotent Schwann cell precursors (SCPs) arriving at the adrenal anlage with the preganglionic nerve fibers, whereas the migratory neural crest cells provide only minor contribution. However, the embryonic origin of the ZO, which differs from the adrenal medulla in a number of aspects, has not been studied in detail. The ZO is composed of chromaffin cells in direct contact with the dorsal aorta and the intraperitoneal cavity and disappears through an autophagy-mediated mechanism after birth. In contrast, the adrenal medulla remains throughout the entire life and furthermore, is covered by the adrenal cortex. Using a combination of lineage tracing strategies with nerve- and cell type-specific ablations, we reveal that the ZO is largely SCP-derived and forms in synchrony with progressively increasing innervation. Moreover, the ZO develops hand-in-hand with the adjacent sympathetic ganglia that coalesce around the dorsal aorta. Finally, we were able to provide evidence for a SCP-contribution to a small but significant proportion of sympathetic neurons of the posterior paraganglia. Thus, this cellular source complements the neural crest, which acts as a main source of sympathetic neurons. Our discovery of a nerve-dependent origin of chromaffin cells and some sympathoblasts may help to understand the origin of pheochromocytoma, paraganglioma and neuroblastoma, all of which are currently thought to be derived from the neural crest or committed sympathoadrenal precursors.

10.
Nat Commun ; 10(1): 4137, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515492

RESUMO

Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.


Assuntos
Modelos Biológicos , Células Receptoras Sensoriais/citologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Camundongos Endogâmicos C57BL , Propriocepção/efeitos dos fármacos , Receptor trkC/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
11.
Cell Rep ; 26(13): 3484-3492.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917305

RESUMO

The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nociceptores/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Galinhas , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Nociceptividade/fisiologia , Fatores de Transcrição/metabolismo
12.
Mol Pharmacol ; 74(3): 595-604, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18524887

RESUMO

Tinnitus is a phantom auditory perception, which can be induced via application of concentrated sodium salicylate, and is known to be associated with hearing loss and altered neuronal excitability in peripheral and central auditory neurons. The molecular features of this excitability, however, has been poorly characterized to date. Brain-derived neurotrophic factor (BDNF), the activity-dependent cytoskeletal protein (Arg3.1, also known as Arc), and c-Fos are known to be affected by changes in excitability and plasticity. Using reverse transcription-polymerase chain reaction, in situ hybridization, and immunohistochemistry, the expression of these genes was monitored in the rat auditory system after local (cochlear) and systemic application of salicylate. Induction of tinnitus and hearing loss was verified in a behavioral model. Regardless of the mode of salicylate application, a common pattern became evident: 1) BDNF mRNA expression was increased in the spiral ganglion neurons of the cochlea; and 2) Arg3.1 expression was significantly reduced in the auditory cortex. Local application of the GABA(A) receptor modulator midazolam resulted in the reversal not only of salicylate-induced changes in cochlear BDNF expression, but also in cortical Arg3.1 expression, indicating that the tinnitus-associated changes in cochlear BDNF expression trigger the decline of cortical Arg3.1 expression. Furthermore, local midazolam application reduced tinnitus perception in the animal model. These findings support Arg3.1 and BDNF as markers for activity changes in the auditory system and suggest a role of GABAergic inhibition of cochlear neurons in the modulation of Arg3.1 plasticity changes in the auditory cortex and tinnitus perception.


Assuntos
Percepção Auditiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Midazolam/farmacologia , Proteínas do Tecido Nervoso/genética , Salicilatos/farmacologia , Zumbido/metabolismo , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/metabolismo , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Proteínas do Citoesqueleto/metabolismo , Feminino , Perda Auditiva/induzido quimicamente , Midazolam/administração & dosagem , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de GABA/metabolismo , Salicilatos/administração & dosagem , Zumbido/patologia
13.
Nat Commun ; 9(1): 3691, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209249

RESUMO

Spiral ganglion (SG) neurons of the cochlea convey all auditory inputs to the brain, yet the cellular and molecular complexity necessary to decode the various acoustic features in the SG has remained unresolved. Using single-cell RNA sequencing, we identify four types of SG neurons, including three novel subclasses of type I neurons and the type II neurons, and provide a comprehensive genetic framework that define their potential synaptic communication patterns. The connectivity patterns of the three subclasses of type I neurons with inner hair cells and their electrophysiological profiles suggest that they represent the intensity-coding properties of auditory afferents. Moreover, neuron type specification is already established at birth, indicating a neuronal diversification process independent of neuronal activity. Thus, this work provides a transcriptional catalog of neuron types in the cochlea, which serves as a valuable resource for dissecting cell-type-specific functions of dedicated afferents in auditory perception and in hearing disorders.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Cóclea/citologia , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo , Potenciais Sinápticos/fisiologia
14.
Science ; 357(6346)2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28684471

RESUMO

Adrenaline is a fundamental circulating hormone for bodily responses to internal and external stressors. Chromaffin cells of the adrenal medulla (AM) represent the main neuroendocrine adrenergic component and are believed to differentiate from neural crest cells. We demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs). SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland, where they detach from the nerve and form postsynaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell type specification. Subsequently, these programs down-regulate SCP-gene and up-regulate chromaffin cell-gene networks. The AM forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.


Assuntos
Medula Suprarrenal/embriologia , Diferenciação Celular , Células Cromafins/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Neurais/citologia , Células Neuroendócrinas/citologia , Células de Schwann/citologia , Medula Suprarrenal/citologia , Animais , Diferenciação Celular/genética , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Mutantes , Proteína Proteolipídica de Mielina/genética , Crista Neural/citologia , Nervos Periféricos/citologia , Fatores de Transcrição SOXE/genética , Nicho de Células-Tronco/genética , Transcrição Gênica
15.
Hear Res ; 191(1-2): 125-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15109712

RESUMO

Hexachlorobenzene (HCB) is a dioxin-like compound widely distributed in the environment. In this study, we investigated the effects of HCB on the cochlea. Conscious free-moving rats were given HCB per os daily for 4 weeks at doses of 0.16, 4 or 16 mg/kg in olive oil, whereas the control group received olive oil only. The effects of HCB were evaluated at various time intervals, by measuring auditory nerve acoustic thresholds and plasma thyroid hormone concentration by radioimmunoassay. Histological evaluation involved surface preparation and scanning electron microscopy observations of cochlear hair cells. At a dose of 0.16 mg/kg, HCB induced no loss of acoustic sensitivity, whereas at 4 mg/kg, it induced cochlear sensitivity deficits at the mid-frequencies (2-16 kHz) with complete recovery once treatment was stopped. At a dose of 16 mg/kg, permanent threshold shifts were observed at all frequencies tested (from 1 to 32 kHz). Morphological studies showed no cochlear hair cell loss or alteration of stereocilia. HCB treatment reduced circulating thyroxine concentrations. Thyroidectomy had no effect on cochlear sensitivity in control animals. Thus, HCB is a potent oto-toxicant, and its ototoxicity may be independent of its thyroidal effects.


Assuntos
Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Perda Auditiva/induzido quimicamente , Hexaclorobenzeno/toxicidade , Animais , Estudos de Casos e Controles , Cóclea/ultraestrutura , Relação Dose-Resposta a Droga , Fungicidas Industriais/administração & dosagem , Células Ciliadas Auditivas/ultraestrutura , Hexaclorobenzeno/administração & dosagem , Masculino , Microscopia Eletrônica de Varredura , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiologia , Hormônios Tireóideos/sangue , Tireoidectomia
16.
Front Cell Neurosci ; 7: 242, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348336

RESUMO

Neurotrophins are key players of neural development by controlling cell death programs. However, the signaling pathways that mediate their selective responses in different populations of neurons remain unclear. In the mammalian cochlea, sensory neurons differentiate perinatally into type I and II populations both expressing TrkB and TrkC, which bind respectively brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3). How these two neuronal populations respond differentially to these two neurotrophins remains unknown. Here, we report in rat the segregation of the nuclear factor-κB (NFκB) subunit p65 specifically within the type II population postnatally. Using dissociated cultures of embryonic and postnatal spiral ganglion neurons, we observed a specific requirement of NFκB for BDNF but not NT3-dependent neuronal survival during a particular postnatal time window that corresponds to a period of neuronal cell death and hair cell innervation refinement in the developing cochlea. Consistently, postnatal p65 knockout mice showed a specific decreased number in type II spiral ganglion neurons. Taken together, these results identify NFκB as a type II neuron-specific factor that participates in the selective survival effects of BDNF and NT3 signaling on developing spiral ganglion neurons.

17.
J Cell Sci ; 118(Pt 19): 4511-25, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16179609

RESUMO

In mammals, degeneration of peripheral auditory neurons constitutes one of the main causes of sensorineural hearing loss. Unfortunately, to date, pharmacological interventions aimed at counteracting this condition have not presented complete effectiveness in protecting the integrity of cochlear neural elements. In this context, the protein kinase C (PKC) family of enzymes are important signalling molecules that play a role in preventing neurodegeneration after nervous system injury. The present study demonstrates, for the first time, that the PKC signalling pathway is directly neurotrophic to axotomised spiral ganglion neurons (SGNs). We found that PKCbetaI was strictly expressed by postnatal and adult SGNs both in situ and in vitro. In cultures of SGNs, we observed that activators of PKC, such as phorbol esters and bryostatin 1, induced neuronal survival and neurite regrowth in a manner dependent on the activation of PKCbetaI. The neuroprotective effects of PKC activators were suppressed by pre-treatment with LY294002 (a PI3K inhibitor) and with U0126 (a MEK inhibitor), indicating that PKC activators promote the survival and neurite outgrowth of SGNs by both PI3K/Akt and MEK/ERK-dependent mechanisms. In addition, whereas combining the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) was shown to provide only an additive effect on SGN survival, the interaction between PKC and neurotrophin signalling gave rise to a synergistic increase in SGN survival. Taken together, the data indicate that PKCbetaI activation represents a key factor for the protection of the integrity of neural elements in the cochlea.


Assuntos
Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Gânglio Espiral da Cóclea/citologia , Animais , Antineoplásicos/farmacologia , Axotomia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Briostatinas , Butadienos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Isoenzimas/metabolismo , Macrolídeos/farmacologia , Morfolinas/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/citologia , Fármacos Neuroprotetores/metabolismo , Neurotrofina 3/metabolismo , Nitrilas/metabolismo , Proteína Quinase C beta , Ratos , Ratos Wistar , Acetato de Tetradecanoilforbol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA