Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Imaging ; 9(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37888315

RESUMO

This paper discusses current formulations based on fuzzy-logic control concepts as applied to the removal of impulsive noise from digital images. We also discuss the various principles related to fuzzy-ruled based logic control techniques, aiming at preserving edges and digital image details efficiently. Detailed descriptions of a number of formulations for recently developed fuzzy-rule logic controlled filters are provided, highlighting the merit of each filter. Fuzzy-rule based filtering algorithms may be designed assuming the tailoring of specific functional sub-modules: (a) logical controlled variable selection, (b) the consideration of different methods for the generation of fuzzy rules and membership functions, (c) the integration of the logical rules for detecting and filtering impulse noise from digital images. More specifically, we discuss impulse noise models and window-based filtering using fuzzy inference based on vector directional filters as associated with the filtering of RGB color images and then explain how fuzzy vector fields can be generated using standard operations on fuzzy sets taking into consideration fixed or random valued impulse noise and fuzzy vector partitioning. We also discuss how fuzzy cellular automata may be used for noise removal by adopting a Moore neighbourhood architecture. We also explain the potential merits of adopting a fuzzy rule based deep learning ensemble classifier which is composed of a convolutional neural network (CNN), a recurrent neural networks (RNN), a long short term memory neural network (LSTM) and a gated recurrent unit (GRU) approaches, all within a fuzzy min-max (FMM) ensemble. Fuzzy non-local mean filter approaches are also considered. A comparison of various performance metrics for conventional and fuzzy logic based filters as well as deep learning filters is provided. The algorhitms discussed have the following advantageous properties: high quality of edge preservation, high quality of spatial noise suppression capability especially for complex images, sound properties of noise removal (in cases when both mixed additive and impulse noise are present), and very fast computational implementation.

2.
Opt Express ; 20(25): 27230-41, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262673

RESUMO

The ability to retrieve information from different layers within a stratified sample using terahertz pulsed reflection imaging and spectroscopy has traditionally been resolution limited by the pulse width available. In this paper, a deconvolution algorithm is presented which circumvents this resolution limit, enabling deep sub-wavelength and sub-pulse width depth resolution. The algorithm is explained through theoretical investigation, and demonstrated by reconstructing signals reflected from boundaries in stratified materials that cannot be resolved directly from the unprocessed time-domain reflection signal. Furthermore, the deconvolution technique has been used to recreate sub-surface images from a stratified sample: imaging the reverse side of a piece of paper.


Assuntos
Algoritmos , Modelos Teóricos , Imagem Terahertz/instrumentação , Imagem Terahertz/métodos , Cyperus/química , Análise de Fourier , Plásticos/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Radiação Terahertz
3.
Comput Methods Programs Biomed ; 214: 106510, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34852935

RESUMO

BACKGROUND AND OBJECTIVE: This paper aims to overview multidimensional mining algorithms in relation to Magnetic Resonance Imaging (MRI) radiogenomics for computer aided detection and diagnosis of breast tumours. The work also aims to address a new problem in radiogenomics mining: how to combine structural radiomics information with non-structural genomics information for improving the accuracy and efficacy of Neoadjuvant Chemotherapy (NAC). METHODS: This requires the automated extraction of parameters from non-structural breast radiomics data, and finding feature vectors with diagnostic value, which then are combined with genomics data. In order to address the problem of weakly labelled tumour images, a Generative Adiversarial Networks (GAN) based deep learning strategy is proposed for the classification of tumour types; this has significant potential for providing accurate real-time identification of tumorous regions from MRI scans. In order to efficiently integrate in a deep learning framework different features from radiogenomics datasets at multiple spatio-temporal resolutions, pyramid structured and multi-scale densely connected U-Nets are proposed. A bidirectional gated recurrent unit (BiGRU) combined with an attention based deep learning approach is also proposed. RESULTS: The aim is to accurately predict NAC responses by combining imaging and genomic datasets. The approaches discussed incorporate some of the latest developments in of current signal processing and artificial intelligence and have significant potential in advancing and provide a development platform for future cutting-edge biomedical radiogenomics analysis. CONCLUSIONS: The association of genotypic and phenotypic features is at the core of the emergent field of Precision Medicine. It makes use of advances in biomedical big data analysis, which enables the correlation between disease-associated phenotypic characteristics, genetics polymorphism and gene activation to be revealed.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia
4.
J Healthc Eng ; 2022: 2599256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299677

RESUMO

In this paper, we present rule-based fuzzy inference systems that consist of a series of mathematical representations based on fuzzy concepts in the filtering structure. It is crucial for understanding and discussing different principles associated with fuzzy filter design procedures. A number of typical fuzzy multichannel filtering approaches are provided in order to clarify the different fuzzy filter designs and compare different algorithms. In particular, in most practical applications (i.e., biomedical image analysis), the emphasis is placed primarily on fuzzy filtering algorithms, with the main advantages of restoration of corrupted medical images and the interpretation capability, along with the capability of edge preservation and relevant image information for accurate diagnosis of diseases.


Assuntos
Lógica Fuzzy , Aumento da Imagem , Algoritmos , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador
5.
Curr Med Imaging ; 17(4): 452-458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32842944

RESUMO

Neoadjuvant Chemotherapy (NAC) in breast cancer patients has considerable prognostic and treatment potential and can be tailored to individual patients as part of precision medicine protocols. This work reviews recent advances in artificial intelligence so as to enable the use of radiogenomics for accurate NAC analysis and prediction. The work addresses a new problem in radiogenomics mining: How to combine structural radiomics information and non-structural genomics information for accurate NAC prediction. This requires the automated extraction of parameters from structural breast radiomics data, and finding non-structural feature vectors with diagnostic value, which then are combined with genomics data acquired from exocrine bodies in blood samples from a cohort of cancer patients to enable accurate NAC prediction. A self-attention-based deep learning approach, along with an effective multi-channel tumour image reconstruction algorithm of high dimensionality, is proposed. The aim was to generate non-structural feature vectors for accurate prediction of the NAC responses by combining imaging datasets with exocrine body related genomics analysis.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Inteligência Artificial , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética
6.
Rev Sci Instrum ; 92(3): 035106, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819998

RESUMO

Diffusion dynamics of water and oil are observed in real-time using video images. Savitzky-Golay derivative filtering ensures accurate localization of the liquid front. System identification demonstrates that a fractional-order model with only two parameters may be used to describe the dynamics of the diffusion process. The method paves the way for video-based cellulose filter paper microfluidics and lateral flow assays, which are low cost and have broad diagnostic applications.

7.
ISA Trans ; 103: 10-18, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278480

RESUMO

This paper proposes a new identification method based on an exponential modulation scheme for the determination of the coefficients and exponents of a fractional-order transfer function. The proposed approach has a broader scope of application compared to a previous method based on step response data, in that it allows for the use of arbitrary input signals. Moreover, it dispenses with the need for repeated simulations during the search for the best fractional exponents, which significantly reduces the computational workload involved in the identification process. Two examples involving measurement noise at the observed system output are presented to illustrate the effectiveness of the proposed method when compared to a conventional output-error optimization approach based on the polytope algorithm. In both examples, the proposed method is found to provide a better trade-off between computational workload and accuracy of the parameter estimates for different realizations of the noise.

8.
Comput Methods Programs Biomed ; 127: 64-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27000290

RESUMO

This work provides a performance comparison of four different machine learning classifiers: multinomial logistic regression with ridge estimators (MLR) classifier, k-nearest neighbours (KNN), support vector machine (SVM) and naïve Bayes (NB) as applied to terahertz (THz) transient time domain sequences associated with pixelated images of different powder samples. The six substances considered, although have similar optical properties, their complex insertion loss at the THz part of the spectrum is significantly different because of differences in both their frequency dependent THz extinction coefficient as well as differences in their refractive index and scattering properties. As scattering can be unquantifiable in many spectroscopic experiments, classification solely on differences in complex insertion loss can be inconclusive. The problem is addressed using two-dimensional (2-D) cross-correlations between background and sample interferograms, these ensure good noise suppression of the datasets and provide a range of statistical features that are subsequently used as inputs to the above classifiers. A cross-validation procedure is adopted to assess the performance of the classifiers. Firstly the measurements related to samples that had thicknesses of 2mm were classified, then samples at thicknesses of 4mm, and after that 3mm were classified and the success rate and consistency of each classifier was recorded. In addition, mixtures having thicknesses of 2 and 4mm as well as mixtures of 2, 3 and 4mm were presented simultaneously to all classifiers. This approach provided further cross-validation of the classification consistency of each algorithm. The results confirm the superiority in classification accuracy and robustness of the MLR (least accuracy 88.24%) and KNN (least accuracy 90.19%) algorithms which consistently outperformed the SVM (least accuracy 74.51%) and NB (least accuracy 56.86%) classifiers for the same number of feature vectors across all studies. The work establishes a general methodology for assessing the performance of other hyperspectral dataset classifiers on the basis of 2-D cross-correlations in far-infrared spectroscopy or other parts of the electromagnetic spectrum. It also advances the wider proliferation of automated THz imaging systems across new application areas e.g., biomedical imaging, industrial processing and quality control where interpretation of hyperspectral images is still under development.


Assuntos
Dinâmica não Linear , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Máquina de Vetores de Suporte
9.
Artif Intell Med ; 67: 1-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26951630

RESUMO

OBJECTIVE: We provide a survey of recent advances in biomedical image analysis and classification from emergent imaging modalities such as terahertz (THz) pulse imaging (TPI) and dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) and identification of their underlining commonalities. METHODS: Both time and frequency domain signal pre-processing techniques are considered: noise removal, spectral analysis, principal component analysis (PCA) and wavelet transforms. Feature extraction and classification methods based on feature vectors using the above processing techniques are reviewed. A tensorial signal processing de-noising framework suitable for spatiotemporal association between features in MRI is also discussed. VALIDATION: Examples where the proposed methodologies have been successful in classifying TPIs and DCE-MRIs are discussed. RESULTS: Identifying commonalities in the structure of such heterogeneous datasets potentially leads to a unified multi-channel signal processing framework for biomedical image analysis. CONCLUSION: The proposed complex valued classification methodology enables fusion of entire datasets from a sequence of spatial images taken at different time stamps; this is of interest from the viewpoint of inferring disease proliferation. The approach is also of interest for other emergent multi-channel biomedical imaging modalities and of relevance across the biomedical signal processing community.


Assuntos
Imageamento por Ressonância Magnética/métodos , Diagnóstico por Computador , Humanos , Análise de Componente Principal , Máquina de Vetores de Suporte
10.
Opt Express ; 11(12): 1462-73, 2003 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19466018

RESUMO

In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems.

11.
Opt Lett ; 32(20): 3008-10, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17938682

RESUMO

A quadratic programming optimization procedure for designing asymmetric apodization windows tailored to the shape of time-domain sample waveforms recorded using a terahertz transient spectrometer is proposed. By artificially degrading the waveforms, the performance of the designed window in both the time and the frequency domains is compared with that of conventional rectangular, triangular (Mertz), and Hamming windows. Examples of window optimization assuming Gaussian functions as the building elements of the apodization window are provided. The formulation is sufficiently general to accommodate other basis functions.

12.
J Opt Soc Am A Opt Image Sci Vis ; 19(12): 2495-509, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12469746

RESUMO

We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen-Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen-Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.


Assuntos
Plantas/química , Água/análise , Previsões , Análise de Fourier , Modelos Lineares , Modelos Biológicos , Óptica e Fotônica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA