Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Med Dosim ; 46(4): 389-397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34176732

RESUMO

Patient quality assurance (QA) is a required part of the treatment care path, and plan failure can lead to increased personnel hours or delay of treatment. The recommendation by the American Association of Physicists in Medicine is that gamma analysis be used to evaluate measured volumetric modulated arc therapy plans. Vendors have developed many different measurement geometries for patient QA devices which could yield varying pass rates when used with the recommended tolerances, normalization, and criterion. For this study, clinically treated stereotactic body radiation therapy plans were used to evaluate differences in gamma dose tolerances and sampled dose distribution complexity for centralized or peripheral measurement geometries on a cylindrical phantom. Random errors were then introduced into a subset of these plans, and the differences in pass rates between the geometries were correlated with differences in the observed mathematical differences. Finally, a single clinically relevant target coverage deviation was introduced to another subset of plans to evaluate whether a particular geometry is measurably better at identifying clinically relevant errors. It was found that centralized geometries resulted in more lenient dose tolerances and less complex sampled dose distributions compared to peripheral geometries. Pass rates were uniformly lower in the peripheral measurement geometry, and the difference in pass rates between the geometries correlated strongly with the difference in dose tolerance and weakly with the difference in the chosen complexity metrics. However, neither of the geometries were sufficiently sensitive enough to detect clinically relevant changes to target coverage when using recommended tolerances and criteria, and no statistically significant difference was found between their pass rates. Given these findings, the authors concluded that stereotactic body radiation therapy plans could fail patient QA when measured in the peripheral geometry but pass in the centralized geometry, with possibly neither having correlation to true clinical deviation.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Ocul Oncol Pathol ; 6(3): 210-218, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32509767

RESUMO

BACKGROUND: Treatment planning for I-125 plaque therapy for uveal melanoma has advanced significantly since the Collaborative Ocular Melanoma Study trial, with more widely available image-guided planning and improved dosimetry. OBJECTIVE: We evaluated real-world practice patterns for I-125 plaque brachytherapy in the United States by studying practice patterns at centers that comprise the Ocular Oncology Study Consortium (OOSC). METHODS: The OOSC database and responses to a treatment practice survey were evaluated. The database contains treatment information from 9 institutions. Patients included in the database were treated between 2010 and 2014. The survey was conducted in 2018 and current treatment planning methods and prescriptions were queried. RESULTS: Examination of the OOSC database revealed that average doses to critical structures were highly consistent, with the exception of one institution. Survey responses indicated that most centers followed published guidelines regarding dose and prescription point. Dose rate ranged from 51 to 118 cGy/h. As of 2018, most institutions use pre-loaded plaques and fundus photographs and/or computed tomography or magnetic resonance imaging in planning. CONCLUSIONS: While there were differences in dosimetric practices, overall agreement in plaque brachytherapy practices was high among OOSC institutions. Clinical margins and planning systems were similar among institutions, while prescription dose, dose rates, and dosimetry varied.

3.
Radiother Oncol ; 119(1): 159-65, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27016171

RESUMO

PURPOSE: A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. METHODS AND MATERIALS: Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. RESULTS: For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p<0.001). For all prostate the mean 2%/2mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p<0.001). The difference between the four systems was small with an average 2%/2mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. CONCLUSIONS: The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods.


Assuntos
Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador , Robótica/instrumentação , Sistemas Computacionais , Humanos , Masculino , Movimento , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Radiat Res ; 183(2): 147-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25574586

RESUMO

Microbeam radiation therapy (MRT) is a form of cancer treatment in which a single large dose of radiation is spatially fractionated in-line or grid-like patterns. Preclinical studies have demonstrated that MRT is capable of eliciting high levels of tumor response while sparing normal tissue that is exposed to the same radiation field. Since a large fraction of the MRT-treated tumor is in the dose valley region that is not directly irradiated, tumor response may be driven by radiation bystander effects, which in turn elicit a microvascular response. Differential alterations in hemodynamics between the tumor and normal tissue may explain the therapeutic advantages of MRT. Direct observation of these dynamic responses presents a challenge for conventional ex vivo analysis. Furthermore, knowledge gleaned from in vitro studies of radiation bystander response has not been widely incorporated into in vivo models of tumor radiotherapy, and the biological contribution of the bystander effect within the tumor microenvironment is unknown. In this study, we employed noninvasive, serial observations of the tumor microenvironment to address the question of how tumor vasculature and HIF-1 expression are affected by microbeam radiotherapy. Tumors (approximately 4 mm in diameter) grown in a dorsal window chamber were irradiated in a single fraction using either a single, microplanar beam (300 micron wide swath) or a wide-field setup (whole-window chamber) to a total dose of 50 Gy. The tumors were optically observed daily for seven days postirradiation. Microvascular changes in the tumor and surrounding normal tissue differed greatly between the wide-field and microbeam treatments. We present evidence that these changes may be due to dissimilar spatial and temporal patterns of HIF-1 expression induced through radiation bystander effects.


Assuntos
Efeito Espectador/efeitos da radiação , Fator 1 Induzível por Hipóxia/metabolismo , Microvasos/metabolismo , Microvasos/efeitos da radiação , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/radioterapia , Neovascularização Patológica/radioterapia , Animais , Linhagem Celular Tumoral , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação , Camundongos , Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia , Radioterapia Conformacional/métodos , Resultado do Tratamento , Microambiente Tumoral/efeitos da radiação
5.
Expert Rev Anticancer Ther ; 14(12): 1411-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25417729

RESUMO

Microbeam radiation therapy (MRT) is a promising preclinical modality for cancer treatment, with remarkable preferential tumoricidal effects, that is, tumor eradication without damaging normal tissue functions. Significant lifespan extension has been demonstrated in brain tumor-bearing small animals treated with MRT. So far, MRT experiments can only be performed in a few synchrotron facilities around the world. Limited access to MRT facilities prevents this enormously promising radiotherapy technology from reaching the broader biomedical research community and hinders its potential clinical translation. We recently demonstrated, for the first time, the feasibility of generating microbeam radiation in a laboratory environment using a carbon nanotube x-ray source array and performed initial small animal studies with various brain tumor models. This new nanotechnology-enabled microbeam delivery method, although still in its infancy, has shown promise for achieving comparable therapeutic effects to synchrotron MRT and has offered a potential pathway for clinical translation.


Assuntos
Neoplasias Encefálicas/radioterapia , Nanotecnologia , Radioterapia/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos
6.
Phys Med Biol ; 59(5): 1283-303, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24556798

RESUMO

Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Nanotubos de Carbono/química , Radioterapia Conformacional/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Glioma/diagnóstico por imagem , Humanos , Camundongos , Radioterapia Guiada por Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
7.
Med Phys ; 41(8): 081705, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086515

RESUMO

PURPOSE: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. METHODS: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 µm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic(©) films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only during a portion of the mouse respiratory cycle when there was minimum motion. Parallel planes of microbeams with 12.4 Gy/plane dose and 900 µm pitch were delivered. The microbeam profiles with and without gating were analyzed using γ-H2Ax immunofluorescence staining. RESULTS: The phantom study showed that the respiratory motion caused a 50% drop in PVDR from 11.5 when there is no motion to 5.4, whereas there was only a 5.5% decrease in PVDR for gated irradiation compared to the no motion case. In the in vivo study, the histology result showed gating increased PVDR by a factor of 2.4 compared to the nongated case, similar to the result from the phantom study. The full width at tenth maximum of the microbeam decreased by 40% in gating in vivo and close to 38% with phantom studies. CONCLUSIONS: The CNT field emission x-ray source array can be synchronized to physiological signals for gated delivery of x-ray radiation to minimize motion-induced beam blurring. Gated MRT reduces valley dose between lines during long-time radiation of a moving object. The technique allows for more precise MRT treatments and makes the CNT MRT device practical for extended treatment.


Assuntos
Terapia por Raios X/instrumentação , Terapia por Raios X/métodos , Animais , Desenho de Equipamento , Estudos de Viabilidade , Imunofluorescência , Fígado/fisiologia , Fígado/efeitos da radiação , Masculino , Camundongos , Camundongos Nus , Modelos Biológicos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento (Física) , Nanotubos de Carbono , Imagens de Fantasmas , Respiração , Síncrotrons , Raios X
8.
Proc SPIE Int Soc Opt Eng ; 86712013 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-27158179

RESUMO

Micro-beam radiation therapy (MRT) uses parallel planes of high dose narrow (10-100 um in width) radiation beams separated by a fraction of a millimeter to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000Gy of entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during the treatment can result in significant movement of micro beam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), and thus can reduce the effectiveness of the MRT. Recently we have developed the first bench-top image guided MRT system for small animal treatment using a high powered carbon nanotube (CNT) x-ray source array. The CNT field emission x-ray source can be electronically synchronized to an external triggering signal to enable physiologically gated firing of x-ray radiation to minimize motion blurring. Here we report the results of phantom study of respiratory gated MRT. A simulation of mouse breathing was performed using a servo motor. Preliminary results show that without gating the micro beam full width at tenth maximum (FWTM) can increase by 70% and PVDR can decrease up to 50%. But with proper gating, both the beam width and PVDR changes can be negligible. Future experiments will involve irradiation of mouse models and comparing histology stains between the controls and the gated irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA