Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 446(7131): 97-101, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17330045

RESUMO

Cypoviruses and baculoviruses are notoriously difficult to eradicate because the virus particles are embedded in micrometre-sized protein crystals called polyhedra. The remarkable stability of polyhedra means that, like bacterial spores, these insect viruses remain infectious for years in soil. The environmental persistence of polyhedra is the cause of significant losses in silkworm cocoon harvests but has also been exploited against pests in biological alternatives to chemical insecticides. Although polyhedra have been extensively characterized since the early 1900s, their atomic organization remains elusive. Here we describe the 2 A crystal structure of both recombinant and infectious silkworm cypovirus polyhedra determined using crystals 5-12 micrometres in diameter purified from insect cells. These are the smallest crystals yet used for de novo X-ray protein structure determination. We found that polyhedra are made of trimers of the viral polyhedrin protein and contain nucleotides. Although the shape of these building blocks is reminiscent of some capsid trimers, polyhedrin has a new fold and has evolved to assemble in vivo into three-dimensional cubic crystals rather than icosahedral shells. The polyhedrin trimers are extensively cross-linked in polyhedra by non-covalent interactions and pack with an exquisite molecular complementarity similar to that of antigen-antibody complexes. The resulting ultrastable and sealed crystals shield the virus particles from environmental damage. The structure suggests that polyhedra can serve as the basis for the development of robust and versatile nanoparticles for biotechnological applications such as microarrays and biopesticides.


Assuntos
Corpos de Inclusão Viral/química , Reoviridae/química , Proteínas Virais/química , Animais , Bombyx/virologia , Cristalização , Cristalografia por Raios X , Corpos de Inclusão Viral/ultraestrutura , Modelos Moleculares , Estrutura Quaternária de Proteína , Reoviridae/genética , Reoviridae/fisiologia , Reoviridae/ultraestrutura , Proteínas Virais/metabolismo , Eliminação de Partículas Virais/fisiologia
2.
Proc Natl Acad Sci U S A ; 106(52): 22205-10, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20007786

RESUMO

Baculoviruses are ubiquitous insect viruses well known for their use as bioinsecticides, gene therapy vectors, and protein expression systems. Overexpression of recombinant proteins in insect cell culture utilizes the strong promoter of the polyhedrin gene. In infected larvae, the polyhedrin protein forms robust intracellular crystals called polyhedra, which protect encased virions for prolonged periods in the environment. Polyhedra are produced by two unrelated families of insect viruses, baculoviruses and cypoviruses. The atomic structure of cypovirus polyhedra revealed an intricate packing of trimers, which are interconnected by a projecting N-terminal helical arm of the polyhedrin molecule. Baculovirus and cypovirus polyhedra share nearly identical lattices, and the N-terminal region of the otherwise unrelated baculovirus polyhedrin protein sequence is also predicted to be alpha-helical. These results suggest homology between the proteins and a common structural basis for viral polyhedra. Here, we present the 2.2-A structure of baculovirus polyhedra determined by x-ray crystallography from microcrystals produced in vivo. We show that the underlying molecular organization is, in fact, very different. Although both polyhedra have nearly identical unit cell dimensions and share I23 symmetry, the polyhedrin molecules are structurally unrelated and pack differently in the crystals. In particular, disulfide bonds and domain-swapped N-terminal domains stabilize the building blocks of baculovirus polyhedra and interlocking C-terminal arms join unit cells together. We show that the N-terminal projecting helical arms have different structural roles in baculovirus and cypovirus polyhedra and conclude that there is no structural evidence for a common evolutionary origin for both classes of polyhedra.


Assuntos
Nucleopoliedrovírus/química , Nucleopoliedrovírus/ultraestrutura , Reoviridae/química , Reoviridae/ultraestrutura , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/ultraestrutura , Animais , Linhagem Celular , Cristalização , Microscopia Eletrônica de Varredura , Modelos Moleculares , Mariposas , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Nucleopoliedrovírus/genética , Proteínas de Matriz de Corpos de Inclusão , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Especificidade da Espécie , Spodoptera , Proteínas Estruturais Virais/genética
3.
Nature ; 424(6949): 699-703, 2003 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12904796

RESUMO

Accurate translation of genetic information into protein sequence depends on complete messenger RNA molecules. Truncated mRNAs cause synthesis of defective proteins, and arrest ribosomes at the end of their incomplete message. In bacteria, a hybrid RNA molecule that combines the functions of both transfer and messenger RNAs (called tmRNA) rescues stalled ribosomes, and targets aberrant, partially synthesized, proteins for proteolytic degradation. Here we report the 3.2-A-resolution structure of the tRNA-like domain of tmRNA (tmRNA(Delta)) in complex with small protein B (SmpB), a protein essential for biological functions of tmRNA. We find that the flexible RNA molecule adopts an open L-shaped conformation and SmpB binds to its elbow region, stabilizing the single-stranded D-loop in an extended conformation. The most striking feature of the structure of tmRNA(Delta) is a 90 degrees rotation of the TPsiC-arm around the helical axis. Owing to this unusual conformation, the SmpB-tmRNA(Delta) complex positioned into the A-site of the ribosome orients SmpB towards the small ribosomal subunit, and directs tmRNA towards the elongation-factor binding region of the ribosome. On the basis of this structure, we propose a model for the binding of tmRNA on the ribosome.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/metabolismo
4.
Curr Opin Struct Biol ; 14(1): 58-65, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15102450

RESUMO

Ribosomes translate genetic information encoded by mRNAs into protein chains with high fidelity. Truncated mRNAs lacking a stop codon will cause the synthesis of incomplete peptide chains and stall translating ribosomes. In bacteria, a ribonucleoprotein complex composed of tmRNA, a molecule that combines the functions of tRNAs and mRNAs, and small protein B (SmpB) rescues stalled ribosomes. The SmpB-tmRNA complex binds to the stalled ribosome, allowing translation to resume at a short internal tmRNA open reading frame that encodes a protein degradation tag. The aberrant protein is released when the ribosome reaches the stop codon at the end of the tmRNA open reading frame and the fused peptide tag targets it for degradation by cellular proteases. The recently determined NMR structures of SmpB, the crystal structure of the SmpB-tmRNA complex and the cryo-EM structure of the SmpB-tmRNA-EF-Tu-ribosome complex have provided first detailed insights into the intricate mechanisms involved in ribosome rescue.


Assuntos
Biossíntese de Proteínas/genética , RNA Bacteriano/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Alanina/metabolismo , Ligação Proteica , Conformação Proteica , RNA Bacteriano/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Relação Estrutura-Atividade
5.
Structure ; 12(4): 689-702, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15062091

RESUMO

Recognition of and discrimination between potential glyco-substrates is central to the function of galectins. Here we dissect the fundamental parameters responsible for such selectivity by the fungal representative, CGL2. The 2.1 A crystal structure of CGL2 and five substrate complexes reveal that this prototype galectin achieves increased substrate specificity by accommodating substituted oligosaccharides of the mammalian blood group A/B type in an extended binding cleft. Kinetic studies on wild-type and mutant CGL2 proteins demonstrate that the tetrameric organization is essential for functionality. The geometric constraints due to the orthogonal orientation of the four binding sites have important consequences on substrate binding and selectivity.


Assuntos
Proteínas Fúngicas/química , Galectinas/química , Sítios de Ligação , Cromatografia em Gel , Coprinus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactosídeos/metabolismo , Galectina 2 , Galectinas/genética , Galectinas/metabolismo , Mutação , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
6.
EMBO J ; 21(18): 4774-84, 2002 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-12234918

RESUMO

The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Dissulfetos/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA