Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(4): 813-828.e10, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36809763

RESUMO

T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-33 , Coriomeningite Linfocítica , Animais , Camundongos , Alarminas/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos Endogâmicos C57BL , Infecção Persistente , Fator 1 de Transcrição de Linfócitos T/metabolismo
2.
Genes Dev ; 35(5-6): 329-334, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602874

RESUMO

It has been assumed that the suprachiasmatic nucleus (SCN) synchronizes peripheral circadian oscillators. However, this has never been convincingly shown, since biochemical time series experiments are not feasible in behaviorally arrhythmic animals. By using long-term bioluminescence recording in freely moving mice, we show that the SCN is indeed required for maintaining synchrony between organs. Surprisingly, however, circadian oscillations persist in the livers of mice devoid of an SCN or oscillators in cells other than hepatocytes. Hence, similar to SCN neurons, hepatocytes can maintain phase coherence in the absence of Zeitgeber signals produced by other organs or environmental cycles.


Assuntos
Relógios Circadianos/fisiologia , Hepatócitos/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/cirurgia
3.
J Gene Med ; 26(1): e3576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37580111

RESUMO

BACKGROUND: Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS: Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS: Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS: Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.


Assuntos
Adenovírus Humanos , Neoplasias , Infecções por Papillomavirus , Humanos , Sorogrupo , Células HEK293 , Adenoviridae/genética , Adenovírus Humanos/genética , Vetores Genéticos/genética , Terapia Genética , Neoplasias/genética , Neoplasias/terapia
4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047354

RESUMO

Epithelial cells may play an important role in the pathologic process of chronic rhinosinusitis with nasal polyps. Therefore, providing epithelial cells from a biobank could greatly contribute to further research. In the present work, the isolation of epithelial cells from long-term cryopreserved tissue is demonstrated. Polyp tissues were cryopreserved in a commercially available freezing medium with dimethyl sulfoxide and stored in liquid nitrogen. The outgrowth and proliferation of epithelial cells from cryopreserved tissue were evaluated and compared to that of fresh tissue. Flow cytometric analysis with anti-cytokeratin, anti-p63, and anti-Ki-67 was performed to identify epithelial cells and determine differentiation and proliferation. A functionality test was performed by determining type 2-relevant proteins, representatively thymic stromal lymphopoietin (TSLP) and periostin, using ELISA. Primary epithelial cells could be isolated from cryopreserved tissues. Cells from cryopreserved tissues showed comparable outgrowth and proliferation to that of fresh tissue. Isolated epithelial cells showed high cytokeratin, p63, and Ki-67 expression and secreted TSLP and periostin. In the present study, a method for long-term cryopreservation of polyp tissue was established, thereby enabling the isolation and cell culture of primary cell culture at a later time. Epithelial cell availability should be greatly improved by including this method in a biobank.


Assuntos
Pólipos Nasais , Rinite , Humanos , Pólipos Nasais/metabolismo , Bancos de Espécimes Biológicos , Células Epiteliais/metabolismo , Citocinas/metabolismo , Criopreservação , Linfopoietina do Estroma do Timo , Rinite/metabolismo
5.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670859

RESUMO

Adenovirus-based gene transfer vectors are the most frequently used vector type in gene therapy clinical trials to date, and they play an important role as genetic vaccine candidates during the ongoing SARS-CoV-2 pandemic. Immediately upon delivery, adenovirus-based vectors exhibit multiple complex vector-host interactions and induce innate and adaptive immune responses. This can severely limit their safety and efficacy, particularly after delivery through the blood stream. In this review article we summarize two strategies to modulate Ad vector-induced immune responses: extensive genomic and chemical capsid modifications. Both strategies have shown beneficial effects in a number of preclinical studies while potential synergistic effects warrant further investigations.


Assuntos
Adenoviridae/genética , Adenoviridae/imunologia , Capsídeo/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Animais , COVID-19 , Vacinas contra COVID-19/imunologia , Proteínas do Capsídeo/genética , Humanos , Imunidade , Imunogenicidade da Vacina , SARS-CoV-2/genética , SARS-CoV-2/imunologia
6.
Rep Prog Phys ; 82(11): 116201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31185458

RESUMO

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m. Neutral LLPs with lifetimes above [Formula: see text]100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.

7.
Nucleic Acids Res ; 45(13): 7841-7854, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28609784

RESUMO

Autonomously replicating vectors represent a simple and versatile model system for genetic modifications, but their localization in the nucleus and effect on endogenous gene expression is largely unknown. Using circular chromosome conformation capture we mapped genomic contact sites of S/MAR-based replicons in HeLa cells. The influence of cis-active sequences on genomic localization was assessed using replicons containing either an insulator sequence or an intron. While the original and the insulator-containing replicons displayed distinct contact sites, the intron-containing replicon showed a rather broad genomic contact pattern. Our results indicate a preference for certain chromatin structures and a rather non-dynamic behaviour during mitosis. Independent of inserted cis-active elements established vector molecules reside preferentially within actively transcribed regions, especially within promoter sequences and transcription start sites. However, transcriptome analyses revealed that established S/MAR-based replicons do not alter gene expression profiles of host genome. Knowledge of preferred contact sites of exogenous DNA, e.g. viral or non-viral episomes, contribute to our understanding of episome behaviour in the nucleus and can be used for vector improvement and guiding of DNA sequences to specific subnuclear sites.


Assuntos
Replicon , Sítios de Ligação/genética , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Genoma Humano , Células HeLa , Humanos , Modelos Genéticos , Plasmídeos/genética , Plasmídeos/metabolismo , Origem de Replicação
8.
Viruses ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005833

RESUMO

To contain the spread of the SARS-CoV-2 pandemic, rapid development of vaccines was required in 2020. Rational design, international efforts, and a lot of hard work yielded the market approval of novel SARS-CoV-2 vaccines based on diverse platforms such as mRNA or adenovirus vectors. The great success of these technologies, in fact, contributed significantly to control the pandemic. Consequently, most scientific literature available in the public domain discloses the results of clinical trials and reveals data of efficaciousness. However, a description of processes and rationales that led to specific vaccine design is only partially available, in particular for adenovirus vectors, even though it could prove helpful for future developments. Here, we disclose our insights from the endeavors to design compatible functional adenoviral vector platform expression cassettes for the SARS-CoV-2 spike protein. We observed that contextualizing genes from an ssRNA virus into a DNA virus provides significant challenges. Besides affecting physical titers, expression cassette design of adenoviral vaccine candidates can affect viral propagation and spike protein expression. Splicing of mRNAs was affected, and fusogenicity of the spike protein in ACE2-overexpressing cells was enhanced when the ER retention signal was deleted.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , RNA Mensageiro , Adenoviridae/genética
9.
BMC Mol Cell Biol ; 24(1): 31, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817076

RESUMO

BACKGROUND: Epithelial cells are an important part of the pathomechanism in chronic rhinosinusitis with nasal polyps. It is therefore essential to establish a robust method for the isolation and culture of epithelial cells from nasal polyps to enable further research. In this study, the feasibility of the outgrowth technique for the isolation of the epithelial cells from the nasal polyps was evaluated. RESULTS: Using the outgrowth technique, epithelial cells could be isolated from all tissue samples. Isolated epithelial cells showed a proliferation rate of approximately 7- to 23-fold every 6 days up to the 3rd passage. Over 97% of isolated cells were shown to be cytokeratin- and p63-positive, and over 86% of them were Ki-67-positive in flow cytometry. Interleukin-33 and periostin were detectable in the supernatant. CONCLUSIONS: We introduce a simple, low-cost, and well-performing method for isolating epithelial cells from nasal polyps with the outgrowth technique.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Células Epiteliais
10.
Am J Clin Nutr ; 117(6): 1195-1210, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963568

RESUMO

BACKGROUND: Human breast milk has a high microRNA (miRNA) content. It remains unknown whether and how milk miRNAs might affect intestinal gene regulation and homeostasis of the developing microbiome after initiating enteral nutrition. However, this requires that relevant milk miRNA amounts survive the gastrointestinal (GI) passage, are taken up by cells, and become available to the RNA interference machinery. It seems important to dissect the fate of these miRNAs after oral ingestion and GI passage. OBJECTIVES: Our goal was to analyze the potential transmissibility of milk miRNAs via the gastrointestinal system in neonate humans and a porcine model in vivo to contribute to the discussion of whether milk miRNAs could influence gene regulation in neonates and thus might vertically transmit developmental relevant signals. METHODS: We performed cross-species profiling of miRNAs via deep sequencing and utilized dietary xenobiotic taxon-specific milk miRNA (xenomiRs) as tracers in human and porcine neonates, followed by functional studies in primary human fetal intestinal epithelial cells using adenovirus-type 5-mediated miRNA gene transfer. RESULTS: Mammals share many milk miRNAs yet exhibit taxon-specific miRNA fingerprints. We traced bovine-specific miRNAs from formula nutrition in human preterm stool and 9 d after the onset of enteral feeding in intestinal cells (ICs) of preterm piglets. Thereafter, several xenomiRs accumulated in the ICs. Moreover, a few hours after introducing enteral feeding in preterm piglets with supplemented reporter miRNAs (cel-miR-39-5p/-3p), we observed their enrichment in blood serum and in argonaute RISC catalytic component 2 (AGO2)-immunocomplexes from intestinal biopsies. CONCLUSIONS: Milk-derived miRNAs survived GI passage in human and porcine neonates. Bovine-specific miRNAs accumulated in ICs of preterm piglets after enteral feeding with bovine colostrum/formula. In piglets, colostrum supplementation with cel-miR-39-5p/-3p resulted in increased blood concentrations of cel-miR-39-3p and argonaute RISC catalytic component 2 (AGO2) loading in ICs. This suggests the possibility of vertical transmission of miRNA signaling from milk through the neonatal digestive tract.


Assuntos
Enterocolite Necrosante , MicroRNAs , Animais , Bovinos , Feminino , Humanos , Animais Recém-Nascidos , Células Epiteliais/patologia , Trato Gastrointestinal , MicroRNAs/genética , Leite , Suínos , Leite Humano
11.
Genes (Basel) ; 13(10)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36292757

RESUMO

The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.


Assuntos
Epigênese Genética , Transposases , Transposases/genética , Elementos de DNA Transponíveis , Transgenes , Plasmídeos/genética , Cromatina
12.
Methods Mol Biol ; 2482: 217-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35610430

RESUMO

There is high interest in investigating the daily dynamics of gene expression in mammalian organs, for example, in liver. Such studies help to elucidate how and with what kinetics peripheral clocks integrate circadian signals from the suprachiasmatic nucleus, which harbors the circadian master pacemaker, with other systemic and environmental cues, such as those associated with feeding and hormones. Organ sampling around the clock, followed by the analysis of RNA and/or proteins, is the most commonly used procedure in assessing rhythmic gene expression. However, this method requires large cohorts of animals and is only applicable to behaviorally rhythmic animals whose phases are known. Real-time recording of gene expression rhythms using luciferase reporters has emerged as a powerful method to acquire continuous, high-resolution datasets from freely moving individual mice. Here, we share our experience and protocols with this technique, using the RT-Biolumicorder setup.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Expressão Gênica , Regulação da Expressão Gênica , Fígado/metabolismo , Luciferases/metabolismo , Mamíferos/genética , Camundongos , Núcleo Supraquiasmático/metabolismo
13.
Viruses ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36146759

RESUMO

Only two decades after discovering miRNAs, our understanding of the functional effects of deregulated miRNAs in the development of diseases, particularly cancer, has been rapidly evolving. These observations and functional studies provide the basis for developing miRNA-based diagnostic markers or new therapeutic strategies. Adenoviral (Ad) vectors belong to the most frequently used vector types in gene therapy and are suitable for strong short-term transgene expression in a variety of cells. Here, we report the set-up and functionality of an Ad-based miRNA vector platform that can be employed to deliver and express a high level of miRNAs efficiently. This vector platform allows fast and efficient vector production to high titers and the expression of pri-miRNA precursors under the control of a polymerase II promoter. In contrast to non-viral miRNA delivery systems, this Ad-based miRNA vector platform allows accurate dosing of the delivered miRNAs. Using a two-vector model, we showed that Ad-driven miRNA expression was sufficient in down-regulating the expression of an overexpressed and highly stable protein. Additional data corroborated the downregulation of multiple endogenous target RNAs using the system presented here. Additionally, we report some unanticipated synergistic effects on the transduction efficiencies in vitro when cells were consecutively transduced with two different Ad-vectors. This effect might be taken into consideration for protocols using two or more different Ad vectors simultaneously.


Assuntos
MicroRNAs , Adenoviridae/genética , Adenoviridae/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transgenes
14.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269463

RESUMO

To develop adenoviral cell- or tissue-specific gene delivery, understanding of the infection mechanisms of adenoviruses is crucial. Several adenoviral attachment proteins such as CD46, CAR and sialic acid have been identified and studied. However, most receptor studies were performed on non-human cells. Combining our reporter gene-tagged adenovirus library with an in vitro human gene knockout model, we performed a systematic analysis of receptor usage comparing different adenoviruses side-by-side. The CRISPR/Cas9 system was used to knockout CD46 and CAR in the human lung epithelial carcinoma cell line A549. Knockout cells were infected with 22 luciferase-expressing adenoviruses derived from adenovirus species B, C, D and E. HAdV-B16, -B21 and -B50 from species B1 as well as HAdV-B34 and -B35 were found to be CD46-dependent. HAdV-C5 and HAdV-E4 from species E were found to be CAR-dependent. Regarding cell entry of HAdV-B3 and -B14 and all species D viruses, both CAR and CD46 play a role, and here, other receptors or attachment structures may also be important since transductions were reduced but not completely inhibited. The established human knockout cell model enables the identification of the most applicable adenovirus types for gene therapy and to further understand adenovirus infection biology.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Comunicação Celular , Linhagem Celular , Biblioteca Gênica , Humanos
15.
Viruses ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372506

RESUMO

Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.


Assuntos
Adenoviridae/genética , COVID-19/prevenção & controle , Capsídeo/química , Adenoviridae/imunologia , COVID-19/imunologia , COVID-19/terapia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Genes Virais , Vetores Genéticos , Humanos , Imunidade , Terapia Viral Oncolítica/métodos , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação
16.
FASEB J ; 23(5): 1303-13, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19103645

RESUMO

Insulin-like growth factor 1 (IGF1) exerts important endocrine and paracrine functions in the cardiovascular system. We identified the common variant -1411C>T in the IGF1 upstream promoter P1, located within several overlapping transcription factor binding sites. Using transient transfection assays, we identified this site as a functional enhancer. The T allele-carrying enhancer, compared with the C allelic portion, exerts significantly reduced or even abrogated activity, respectively, in SaOs-2 and HepG2 (all P<0.0001) as well as in differentiated THP-1 macrophages. Electrophoretic mobility shift assay and subsequent supershift experiments in HepG2 identified c-Jun as the binding partner exclusively to the T allele, whereas CCAAT/enhancer-binding protein delta and interferon consensus site-binding protein/interferon-regulating factor 8 interacted only with the C allelic promoter portion. Furthermore, genotyping in a case-control study for essential hypertension (n=745 hypertensive patients; n=769 normotensive control subjects) for this variant revealed an odds ratio for hypertension of 0.73 (95% confidence interval 0.58-0.91, P=0.006) associated with the T allele, and normotensive subjects carrying the protective T allele displayed a significant decrease in diastolic (P=0.036) and systolic (P=0.024) blood pressure levels. We here report detection of a functional enhancer module in the upstream IGF1 promoter region, which might play a key role in local IGF1 bioavailability. Whether -1411C>T is also associated with other IGF1-related disease phenotypes should be evaluated further in population studies.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Regiões Promotoras Genéticas , Sequência de Bases , Proteína delta de Ligação ao Facilitador CCAAT/genética , Linhagem Celular Tumoral , Células Cultivadas , Biologia Computacional , Sequência Consenso , Elementos Facilitadores Genéticos/genética , Feminino , Humanos , Hipertensão/genética , Fatores Reguladores de Interferon/genética , Masculino , Pessoa de Meia-Idade , Transcrição Gênica/fisiologia
17.
Arterioscler Thromb Vasc Biol ; 29(10): 1638-43, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19661483

RESUMO

OBJECTIVE: Osteoprotegerin (OPG) has been reported to be involved in the development of atherosclerotic disease, and OPG gene variation has been associated with plasma OPG levels and different cardiovascular disease phenotypes. However, the genetic architecture of the OPG promoter and its transcriptional regulation are poorly characterized. METHODS AND RESULTS: We identified 1008 bp of the OPG 5'-flanking region to be sufficiently transcriptionally active in osteosarcoma cell lines and generated serial promoter deletion constructs. Individual subcloning revealed the existence of 3 molecular haplotypes (MolHaps): [T(-960)-A(-946)-G(-900)-T(-864); MolHap1, wild type], [T(-960)-G(-946)-G(-900)-T(-864); MolHap2], [C(-960)-G(-946)-A(-900)-G(-864); MolHap4]. Compared to MolHap1, transcriptional activities of MolHaps 2 and 4 were significantly reduced (P=0.0018). Whereas introduction of the -159C allele reduced transcriptional activities of the full-length constructs (P=0.0014), it significantly increased activities of the deletion constructs (P=0.0005). Electrophoretic mobility shift, competition, and chromatin immunoprecipitation assays revealed specific DNA:protein interactions for the MolHaps with Sp1 and NF-1, and identified Egr1 interacting exclusively with the -159T allele. CONCLUSIONS: We propose new structural and transcriptional features within the OPG promoter region and identified MolHaps being differentially transcriptionally active and allele-dependently interacting with a proximal polymorphic site.


Assuntos
Haplótipos , Osteoprotegerina/genética , Regiões Promotoras Genéticas/fisiologia , Sítios de Ligação , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Neurofibromina 1/metabolismo , RNA Mensageiro/análise , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica
18.
Front Immunol ; 11: 592328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613516

RESUMO

Chronic hepatotropic viral infections are characterized by exhausted CD8+ T cells in the presence of cognate antigen in the liver. The impairment of T cell response limits the control of chronic hepatotropic viruses. Immune-modulatory strategies are attractive options to re-invigorate exhausted T cells. However, in hepatotropic viral infections, the knowledge about immune-modulatory effects on the in-situ regulation of exhausted intrahepatic CD8+ T cells is limited. In this study, we elucidated the functional heterogeneity in the pool of exhausted CD8+ T cells in the liver of mice expressing the model antigen Ova in a fraction of hepatocytes. We found a subpopulation of intrahepatic CXCR5+ Ova-specific CD8+ T cells, which are profoundly cytotoxic, exhibiting efficient metabolic functions as well as improved memory recall and self-maintenance. The intrahepatic Ova-specific CXCR5+ CD8+ T cells are possibly tissue resident cells, which may rely largely on OXPHOS and glycolysis to fuel their cellular processes. Importantly, host conditioning with CpG oligonucleotide reinvigorates and promotes exhausted T cell expansion, facilitating complete antigen eradication. The CpG oligonucleotide-mediated reinvigoration may support resident memory T cell formation and the maintenance of CXCR5+ Ova-specific CD8+ T cells in the liver. These findings suggest that CpG oligodinucleotide may preferentially target CXCR5+ CD8+ T cells for expansion to facilitate the revival of exhausted T cells. Thus, therapeutic strategies aiming to expand CXCR5+ CD8+ T cells might provide a novel approach against chronic liver infection.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunomodulação , Fígado/imunologia , Fígado/metabolismo , Receptores CXCR5/metabolismo , Transferência Adotiva , Animais , Biomarcadores , Proliferação de Células , Imunização , Fígado/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 27(7): 1610-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17510469

RESUMO

OBJECTIVES: Apolipoprotein E (apoE) exerts antiatherogenic effects but precise mechanisms remain unclear. We here investigated the effect of apoE on intracellular signaling by interleukin-1beta (IL-1beta), a proinflammatory cytokine present in atherosclerotic lesions. METHODS AND RESULTS: IL-1beta-induced expression and activation of inducible nitric oxide synthase and cyclooxygenase-2 were inhibited by apoE in vascular smooth muscle cells (VSMCs). These inhibitory effects were linked to the suppression of both NF-kappaB and activating protein-1 (AP-1) transactivation, suggesting that the interruption of IL-1beta signaling occurs upstream of transcription factors. Studies in VSMCs overexpressing IL-1beta signaling intermediates revealed that NF-kappaB transactivation was inhibited by apoE in MyD88- and IRAK1- but not in TRAF6-transfected cells. Furthermore, apoE prevented IRAK1 phosphorylation and IRAK1-TRAF6 but not MyD88-IRAK1 complex formation. Inhibitory effects of apoE on IL-1beta signaling were abolished after silencing LDL receptor-related protein-1 (LRP1) expression with siRNA. In addition, inhibitors of adenylyl cyclase and protein kinase A (PKA) restored IL-1beta signaling in apoE-treated VSMCs, whereas apoE stimulated PKA activity. ApoE inhibited VSMC activation in response to IL-18 but not to tumor necrosis factor-alpha or polyinosinic:polycytidylic acid. CONCLUSION: ApoE targets IRAK-1 activation and thereby interrupts IL-1beta and IL-18 signaling in VSMCs. This antiinflammatory effect represents a novel antiatherogenic activity of apoE.


Assuntos
Apolipoproteínas E/farmacologia , Ciclo-Oxigenase 2/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/farmacologia , Músculo Liso Vascular/citologia , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/fisiopatologia , Células Cultivadas , Quinases Associadas a Receptores de Interleucina-1/efeitos dos fármacos , Interleucina-1beta/metabolismo , Músculo Liso Vascular/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Ratos , Sensibilidade e Especificidade , Transdução de Sinais
20.
J Vis Exp ; (140)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30417881

RESUMO

Adenovirus vectors are potent tools for genetic vaccination and oncolytic virotherapy. However, they are prone to multiple undesired vector-host interactions, especially after in vivo delivery. It is a consensus that the limitations imposed by undesired vector-host interactions can only be overcome if defined modifications of the vector surface are performed. These modifications include shielding of the particles from unwanted interactions and targeting by the introduction of new ligands. The goal of the protocol presented here is to enable the reader to generate shielded and, if desired, retargeted human adenovirus gene transfer vectors or oncolytic viruses. The protocol will enable researchers to modify the surface of adenovirus vector capsids by specific chemical attachment of synthetic polymers, carbohydrates, lipids, or other biological or chemical moieties. It describes the cutting-edge technology of combined genetic and chemical capsid modifications, which have been shown to facilitate the understanding and overcoming of barriers for in vivo delivery of adenovirus vectors. A detailed and commented description of the crucial steps for performing specific chemical reactions with biologically active viruses or virus-derived vectors is provided. The technology described in the protocol is based on the genetic introduction of (naturally absent) cysteine residues into solvent-exposed loops of adenovirus-derived vectors. These cysteine residues provide a specific chemical reactivity that can, after production of the vectors to high titers, be exploited for highly specific and efficient covalent chemical coupling of molecules from a wide variety of substance classes to the vector particles. Importantly, this protocol can easily be adapted to perform a broad variety of different (non-thiol-based) chemical modifications of adenovirus vector capsids. Finally, it is likely that non-enveloped virus-based gene transfer vectors other than adenovirus can be modified from the basis of this protocol.


Assuntos
Adenoviridae/genética , Proteínas do Capsídeo/genética , Vetores Genéticos/genética , Animais , Fenômenos Biofísicos , Capsídeo , Proteínas do Capsídeo/química , Cisteína , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Ligantes , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Polímeros/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA