RESUMO
We analyze data from the fall 2020 pandemic response efforts at the University of Colorado Boulder, where more than 72,500 saliva samples were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using qRT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously observed in symptomatic individuals. Regardless of symptomatic status, â¼50% of individuals who test positive for SARS-CoV-2 seem to be in noninfectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral "supercarriers" and possibly also superspreaders.
Assuntos
COVID-19/virologia , Portador Sadio/virologia , SARS-CoV-2 , Infecções Assintomáticas/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/transmissão , Portador Sadio/diagnóstico , Portador Sadio/epidemiologia , Portador Sadio/transmissão , Colorado/epidemiologia , Hospitalização/estatística & dados numéricos , Humanos , Programas de Rastreamento/estatística & dados numéricos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Universidades , Carga Viral , VírionRESUMO
BACKGROUND: The coronavirus disease 2019 pandemic spread to >200 countries in <6 months. To understand coronavirus spread, determining transmission rate and defining factors that increase transmission risk are essential. Most cases are asymptomatic, but people with asymptomatic infection have viral loads indistinguishable from those in symptomatic people, and they do transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, asymptomatic cases are often undetected. METHODS: Given high residence hall student density, the University of Colorado Boulder established a mandatory weekly screening test program. We analyzed longitudinal data from 6408 students and identified 116 likely transmission events in which a second roommate tested positive within 14 days of the index roommate. RESULTS: Although the infection rate was lower in single-occupancy rooms (10%) than in multiple-occupancy rooms (19%), interroommate transmission occurred only about 20% of the time. Cases were usually asymptomatic at the time of detection. Notably, individuals who likely transmitted had an average viral load approximately 6.5-fold higher than individuals who did not (mean quantification cycle [Cq], 26.2 vs 28.9). Although students with diagnosed SARS-CoV-2 infection moved to isolation rooms, there was no difference in time to isolation between cases with or without interroommate transmission. CONCLUSIONS: This analysis argues that interroommate transmission occurs infrequently in residence halls and provides strong correlative evidence that viral load is proportional to transmission probability.
Assuntos
Infecções Assintomáticas/epidemiologia , COVID-19/transmissão , SARS-CoV-2/patogenicidade , Carga Viral , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Estudantes , Adulto JovemRESUMO
Here, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification. The test has two steps: (1) heat saliva with a stabilization solution and (2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow. Because this test is pH dependent, it can react falsely to some naturally acidic saliva samples. We report unique saliva stabilization protocols that rendered 295 healthy saliva samples compatible with the test, producing zero false positives. We also evaluated the test on 278 saliva samples from individuals who were infected with SARS-CoV-2 but had no symptoms at the time of saliva collection, and from 54 matched pairs of saliva and anterior nasal samples from infected individuals. The Saliva TwoStep test described herein identified infections with 94% sensitivity and >99% specificity in individuals with sub-clinical (asymptomatic or pre-symptomatic) infections.
Assuntos
COVID-19/diagnóstico , COVID-19/virologia , Portador Sadio/diagnóstico , Portador Sadio/virologia , SARS-CoV-2/isolamento & purificação , Saliva/virologia , COVID-19/metabolismo , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes/métodosRESUMO
To assist in the COVID-19 public health guidance on a college campus, daily composite wastewater samples were withdrawn at 20 manhole locations across the University of Colorado Boulder campus. Low-cost autosamplers were fabricated in-house to enable an economical approach to this distributed study. These sample stations operated from August 25th until November 23rd during the fall 2020 semester, with 1512 samples collected. The concentration of SARS-CoV-2 in each sample was quantified through two comparative reverse transcription quantitative polymerase chain reactions (RT-qPCRs). These methods were distinct in the utilization of technical replicates and normalization to an endogenous control. (1) Higher temporal resolution compensates for supply chain or other constraints that prevent technical or biological replicates. (2) The data normalized by an endogenous control agreed with the raw concentration data, minimizing the utility of normalization. The raw wastewater concentration values reflected SARS-CoV-2 prevalence on campus as detected by clinical services. Overall, combining the low-cost composite sampler with a method that quantifies the SARS-CoV-2 signal within six hours enabled actionable and time-responsive data delivered to key stakeholders. With daily reporting of the findings, wastewater surveillance assisted in decision making during critical phases of the pandemic on campus, from detecting individual cases within populations ranging from 109 to 2048 individuals to monitoring the success of on-campus interventions.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Universidades , Águas ResiduáriasRESUMO
Here, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The test has two steps: 1) heat saliva with a stabilization solution, and 2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow. Because this test is pH dependent, it can react falsely to some naturally acidic saliva samples. We report unique saliva stabilization protocols that rendered 295 healthy saliva samples compatible with the test, producing zero false positives. We also evaluated the test on 278 saliva samples from individuals who were infected with SARS-CoV-2 but had no symptoms at the time of saliva collection, and from 54 matched pairs of saliva and anterior nasal samples from infected individuals. The Saliva TwoStep test described herein identified infections with 94% sensitivity and >99% specificity in individuals with sub-clinical (asymptomatic or pre-symptomatic) infections.
RESUMO
We analyze data from the Fall 2020 pandemic response efforts at the University of Colorado Boulder (USA), where more than 72,500 saliva samples were tested for SARS-CoV-2 using quantitative RT-PCR. All samples were collected from individuals who reported no symptoms associated with COVID-19 on the day of collection. From these, 1,405 positive cases were identified. The distribution of viral loads within these asymptomatic individuals was indistinguishable from what has been previously reported in symptomatic individuals. Regardless of symptomatic status, approximately 50% of individuals who test positive for SARS-CoV-2 seem to be in non-infectious phases of the disease, based on having low viral loads in a range from which live virus has rarely been isolated. We find that, at any given time, just 2% of individuals carry 90% of the virions circulating within communities, serving as viral "super-carriers" and possibly also super-spreaders.