Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8009): 765-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658685

RESUMO

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

2.
Nature ; 613(7942): 60-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288749

RESUMO

Dye-sensitized solar cells (DSCs) convert light into electricity by using photosensitizers adsorbed on the surface of nanocrystalline mesoporous titanium dioxide (TiO2) films along with electrolytes or solid charge-transport materials1-3. They possess many features including transparency, multicolour and low-cost fabrication, and are being deployed in glass facades, skylights and greenhouses4. Recent development of sensitizers5-10, redox mediators11-13 and device structures14 has improved the performance of DSCs, particularly under ambient light conditions14-17. To further enhance their efficiency, it is pivotal to control the assembly of dye molecules on the surface of TiO2 to favour charge generation. Here we report a route of pre-adsorbing a monolayer of a hydroxamic acid derivative on the surface of TiO2 to improve the dye molecular packing and photovoltaic performance of two newly designed co-adsorbed sensitizers that harvest light quantitatively across the entire visible domain. The best performing cosensitized solar cells exhibited a power conversion efficiency of 15.2% (which has been independently confirmed) under a standard air mass of 1.5 global simulated sunlight, and showed long-term operational stability (500 h). Devices with a larger active area of 2.8 cm2 exhibited a power conversion efficiency of 28.4% to 30.2% over a wide range of ambient light intensities, along with high stability. Our findings pave the way for facile access to high-performance DSCs and offer promising prospects for applications as power supplies and battery replacements for low-power electronic devices18-20 that use ambient light as their energy source.

3.
Nature ; 592(7854): 381-385, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820983

RESUMO

Metal halide perovskites of the general formula ABX3-where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion-have shown great potential as light harvesters for thin-film photovoltaics1-5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6-9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO-) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance.

5.
Chem Soc Rev ; 51(17): 7509-7530, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35929481

RESUMO

Halide perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) approaching 26%, however, the stability issue hinders their commercialization. Due to the soft ionic nature of perovskite materials, the strain effect on perovskite films has been recently recognized as one of the key factors that affects their opto-electronic properties and the device stability. Herein, we summarized the origins of strain, characterization techniques, and implications of strain on both perovskite film and solar cells as well as various strategies to control the strain. Finally, we proposed effective strategies for future strain engineering. We believe this comprehensive review could further facilitate researchers with a deeper understanding of strain effect and enhance the research activity in engineering the strain to further improve performance and especially the device stability toward commercialization.

6.
Proc Natl Acad Sci U S A ; 116(20): 9735-9740, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30918130

RESUMO

Conversion of carbon dioxide into hydrocarbons using solar energy is an attractive strategy for storing such a renewable source of energy into the form of chemical energy (a fuel). This can be achieved in a system coupling a photovoltaic (PV) cell to an electrochemical cell (EC) for CO2 reduction. To be beneficial and applicable, such a system should use low-cost and easily processable photovoltaic cells and display minimal energy losses associated with the catalysts at the anode and cathode and with the electrolyzer device. In this work, we have considered all of these parameters altogether to set up a reference PV-EC system for CO2 reduction to hydrocarbons. By using the same original and efficient Cu-based catalysts at both electrodes of the electrolyzer, and by minimizing all possible energy losses associated with the electrolyzer device, we have achieved CO2 reduction to ethylene and ethane with a 21% energy efficiency. Coupled with a state-of-the-art, low-cost perovskite photovoltaic minimodule, this system reaches a 2.3% solar-to-hydrocarbon efficiency, setting a benchmark for an inexpensive all-earth-abundant PV-EC system.

7.
Chem Soc Rev ; 50(12): 7108-7131, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33969365

RESUMO

The use of a solution process to grow perovskite thin films allows to extend the material processability. It is known that the physicochemical properties of the perovskite material can be tuned by altering the solution precursors as well as by controlling the crystal growth of the film. This advancement necessarily implies the need for an understanding of the kinetic phenomena for the thin-film formation. Therefore, in this work we review the state of the art of perovskite hybrid crystal growth, starting from a comprehensive theoretical description towards broad experimental investigations. One part of the study focuses on rapid thermal annealing as a tool to control nucleation and crystal growth. We deduce that controlling crystal growth with high-precision photonic sintering simplifies the experimental framework required to understand perovskite crystallization. These types of synthesis methods open a new empirical parameter space. All this knowledge serves to improve the perovskite synthesis and the thin films' quality, which will result in higher device performances.

8.
Chem Soc Rev ; 50(22): 12450-12550, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590638

RESUMO

Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.

9.
Angew Chem Int Ed Engl ; 61(18): e202116534, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35174939

RESUMO

The performance enhancement of inverted perovskite solar cells applying nickel oxide (NiOx ) as the hole transport layer (HTL) has been limited by impurity ions (such as nitrate ions). Herein, we have proposed a strategy to obtain high-quality NiOx nanoparticles via an ionic liquid-assisted synthesis method (NiOx -IL). Experimental and theoretical results illustrate that the cation of the ionic liquid can inhibit the adsorption of impurity ions on nickel hydroxide through a strong hydrogen bond and low adsorption energy, thereby obtaining NiOx -IL HTL with high conductivity and strong hole-extraction ability. Importantly, the removal of impurity ions can effectively suppress the redox reaction between the NiOx film and the perovskite film, thus slowing down the deterioration of device performance. Consequently, the modified inverted device shows a striking efficiency exceeding 22.62 %, and superior stability maintaining 92 % efficiency at a maximum power point tracking under one sun illumination for 1000 h.

10.
Angew Chem Int Ed Engl ; 61(25): e202204148, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384201

RESUMO

Defect passivation via post-treatment of perovskite films is an effective method to fabricate high-performance perovskite solar cells (PSCs). However, the passivation durability is still an issue due to the weak and vulnerable bonding between passivating functional groups and perovskite defect sites. Here we propose a cholesterol derivative self-assembly strategy to construct crosslinked and compact membranes throughout perovskite films. These supramolecular membranes act as a robust protection layer against harsh operational conditions while providing effective passivation of defects from surface toward inner grain boundaries. The resultant PSCs exhibit a power conversion efficiency of 23.34 % with an impressive open-circuit voltage of 1.164 eV. The unencapsulated devices retain 92 % of their initial efficiencies after 1600 h of storage under ambient conditions, and remain almost unchanged after heating at 85 °C for 500 h in a nitrogen atmosphere, showing significantly improved stability.

11.
J Am Chem Soc ; 143(10): 3911-3917, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33660986

RESUMO

Layered 2D perovskites have been extensively investigated by scientists with photovoltaics (PV) expertise due to their good environmental stability. However, a random phase distribution in the perovskite film could affect both the performance and stability of the devices. To overcome this problem, we propose multifunctional interface engineering of 2D GA2MA4Pb5I16 perovskite by employing guanidinium bromide (GABr) on top of it to optimize the secondary crystallization process. It is found that GABr treatment can facilitate to form a shiny and smooth surface of the 2D GA2MA4Pb5I16 film with excellent optoelectronic properties. Thus, we realize efficient and stable 2D perovskite solar cells (PSCs) with a champion power conversion efficiency (PCE) of 19.3% under AM 1.5G illumination. Additionally, the optimized device without encapsulation could retain 94% of the initial PCE for more than 3000 h after being stored under ambient conditions.

12.
J Am Chem Soc ; 143(8): 3231-3237, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33600169

RESUMO

Long-term durability is critically important for the commercialization of perovskite solar cells (PSCs). The ionic character of the perovskite and the hydrophilicity of commonly used additives for the hole-transporting layer (HTL), such as lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) and tert-butylpyridine (tBP), render PSCs prone to moisture attack, compromising their long-term stability. Here we introduce a trifluoromethylation strategy to overcome this drawback and to boost the PSC's solar to electric power conversion efficiency (PCE). We employ 4-(trifluoromethyl)benzylammonium iodide (TFMBAI) as an amphiphilic modifier for interfacial defect mitigation and 4-(trifluoromethyl)pyridine (TFP) as an additive to enhance the HTL's hydrophobicity. Surface treatment of the triple-cation perovskite with TFMBAI largely suppressed the nonradiative charge carrier recombination, boosting the PCE from 20.9% to 23.9% and suppressing hysteresis, while adding TFP to the HTL enhanced the PCS's resistance to moisture while maintaining its high PCE. Taking advantage of the synergistic effects resulting from the combination of both fluoromethylated modifiers, we realize TFMBAI/TFP-based highly efficient PSCs with excellent operational stability and resistance to moisture, retaining over 96% of their initial efficiency after 500 h maximum power point tracking (MPPT) under simulated 1 sun irradiation and 97% of their initial efficiency after 1100 h of exposure under ambient conditions to a relative humidity of 60-70%.

13.
J Am Chem Soc ; 143(3): 1529-1538, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442979

RESUMO

The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA+) and 2-(perfluorophenyl)ethylammonium (FEA+) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.

14.
J Am Chem Soc ; 142(26): 11428-11433, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32391696

RESUMO

The employment of 2D perovskites is a promising approach to tackling the stability and voltage issues inherent in perovskite solar cells. It remains unclear, however, whether other perovskites with different dimensionalities have the same effect on efficiency and stability. Here, we report the use of quasi-3D azetidinium lead iodide (AzPbI3) as a secondary layer on top of the primary 3D perovskite film that results in significant improvements in the photovoltaic parameters. Remarkably, the utilization of AzPbI3 leads to a new passivation mechanism due to the presence of surface dipoles resulting in a power conversion efficiency (PCE) of 22.4%. The open-circuit voltage obtained is as high as 1.18 V, which is among the highest reported to date for single junction perovskite solar cells, corresponding to a voltage deficit of 0.37 V for a band gap of 1.55 eV.

15.
J Am Chem Soc ; 142(47): 19980-19991, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170007

RESUMO

The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic performance and device stability of perovskite solar cells. Herein, we employ crown ethers to modulate perovskite films, affording passivation of undercoordinated surface defects. This interaction has been elucidated by solid-state nuclear magnetic resonance and density functional theory calculations. The crown ether hosts induce the formation of host-guest complexes on the surface of the perovskite films, which reduces the concentration of surface electronic defects and suppresses nonradiative recombination by 40%, while minimizing moisture permeation. As a result, we achieved substantially improved photovoltaic performance with power conversion efficiencies exceeding 23%, accompanied by enhanced stability under ambient and operational conditions. This work opens a new avenue to improve the performance and stability of perovskite-based optoelectronic devices through supramolecular chemistry.

16.
Small ; 16(24): e2001772, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419275

RESUMO

Inorganic CsPbI3 perovskite quantum dot (PQD) receives increasing attention for the application in the new generation solar cells, but the defects on the surface of PQDs significantly affect the photovoltaic performance and stability of solar cells. Herein, the amino acids are used as dual-passivation ligands to passivate the surface defects of CsPbI3 PQDs using a facile single-step ligand exchange strategy. The PQD surface properties are investigated in depth by combining experimental studies and theoretical calculation approaches. The PQD solid films with amino acids as dual-passivation ligands on the PQD surface are thoroughly characterized using extensive techniques, which reveal that the glycine ligand can significantly improve defect passivation of PQDs and therefore diminish charge carrier recombination in the PQD solid. The power conversion efficiency (PCE) of the glycine-based PQD solar cell (PQDSC) is improved by 16.9% compared with that of the traditional PQDSC fabricated with Pb(NO3 )2 treating the PQD surface, owning to improved charge carrier extraction. Theoretical calculations are carried out to comprehensively understand the thermodynamic feasibility and favorable charge density distribution on the PQD surface with a dual-passivation ligand.

17.
Small ; 16(34): e2002887, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32697420

RESUMO

Perovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi-heteroface PSCs (QHF-PSCs) is designed by a double-layer perovskite film. Such brand new PSCs have good carrier separation capabilities, effectively suppress the nonradiative recombination of the PSCs, and thus greatly improve the open-circuit voltage and PCE. The root cause of the performance improvement is the benefit from the additional built-in electric field, which is confirmed by measuring the external quantum efficiency under applied electric field and Kelvin probe force microscope. Meanwhile, an intermediate band gap perovskite layer can be obtained simply by combining a wide band gap perovskite layer with a narrow band gap perovskite layer. Tunability of the band gap is obtained by varying the film thicknesses of the narrow and wide band gap layers. This phenomenon is quite different from traditional inorganic solar cells, whose band gap is determined only by the narrowest band gap layer. It is believed that these QHF-PSCs will be an effective strategy to further enhance PCE in PSCs and provide basis to further understand and develop the perovskite materials platform.

18.
Inorg Chem ; 59(20): 15154-15166, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33012162

RESUMO

Hole-transport materials (HTMs) are key electronic components for the functioning of perovskite solar cells (PSCs) as they extract the photogenerated holes from the perovskite to be transported subsequently to the back electrode while minimizing the loss from electron recombination. Herein, we report the synthesis and characterization of novel germanium-based compounds with [{HC(CMeNAr)2}GeNCS] (2), [{HC(CMeNAr)2}Ge(S)NCS] (3), and [{HC(CMeNAr)2}Ge(Se)NCS] (4) compositions, with Ar = 2,6-iPr2C6H3 and the photovoltaic performance of 3 and 4 that is the same as for HTM in PSC. All compounds displayed excellent thermal properties and an appropriate alignment of energy levels for the perovskite with maximum optical absorption in the near-UV region. As revealed by space-charge limited-current (SCLC) measurements, compounds 3 and 4 have competing hole mobilities of about 1.37 × 10-4 and 4.88 × 10-4 cm2 V-1 s-1, respectively. Upon assessing PSC devices using 3 and 4 with triple-cation perovskite absorber Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3, the power conversion efficiencies (PCEs) were about 13.03 and 9.23%, respectively, both without doping and additives, and were compared with benchmark HTM spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene). Quantum chemical calculations with DFT showed that the optoelectronic properties are strongly influenced by the combined contributions of the germanium atom, the pseudohalide moiety (NCS-), and chalcogenides (S2- or Se2-). Fine tuning the electronic properties of germanium is thus a good strategy for the targeted synthesis of potential conducting molecules in PSCs.

19.
Chem Soc Rev ; 48(14): 3705-3722, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31120048

RESUMO

To advance the progress of photoelectrolysis, various promising devices integrated with p- and n-type photocatalysts and dye sensitized photoelectrodes have been systematically studied. This review discusses, from theory to practice, an integration strategy for state-of-the-art dye sensitized solar cells (DSSCs) with potential p- and n-type photo-electrocatalysts or directly with dye sensitized photoanodes and cathodes for hydrogen and oxygen production through water splitting. Thorough insight into the theoretical approach which systematically drives the photoelectrolysis reaction directly or in a coupled mode, with diverse configurations of DSSCs and other photovoltaic (PV) cells, is crucial to understand the underlying fundamental concepts and elucidate trends in such reactions, and will serve as a guide to design new electrocatalysts and their integration with new PV devices, while simultaneously underlining major gaps that are required to address the challenges. Likewise, challenges, opportunities and frontiers in tandem and hybrid perovskite electrolysis processes are also discoursed in the present tutorial review. We illustrate our analysis by encompassing these integrated systems to photo-electrolysis, artificial photosynthesis such as CO2 conversion into value-added chemical reduction-products, where advancements in new catalysts and solution-processed inexpensive PV devices can certainly enrich the overall performance of the renewable production of solar fuels, including solar driven carbonaceous fuels.

20.
Nano Lett ; 19(1): 150-157, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540195

RESUMO

Three-dimensional (3D) perovskite materials display remarkable potential in photovoltaics owing to their superior solar-to-electric power conversion efficiency, with current efforts focused on improving stability. Two-dimensional (2D) perovskite analogues feature greater stability toward environmental factors, such as moisture, owing to a hydrophobic organic cation that acts as a spacer between the inorganic layers, which offers a significant advantage over their comparatively less stable 3D analogues. Here, we demonstrate the first example of a formamidinium (FA) containing Dion-Jacobson 2D perovskite material characterized by the BFA n-1Pb nI3 n+1 formulation through employing a novel bifunctional organic spacer (B), namely 1,4-phenylenedimethanammonium (PDMA). We achieve remarkable efficiencies exceeding 7% for (PDMA)FA2Pb3I10 based 2D perovskite solar cells resisting degradation when exposed to humid ambient air, which opens up new avenues in the design of stable perovskite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA